精英家教网 > 初中数学 > 题目详情

【题目】如图:在4×4的正方形(每个小正方形的边长均为1)网格中,以A为顶点,其他三个顶点都在格点(网格的交点)上,且面积为2的平行四边形共有多少个?( )

A.12B.16C.24D.25

【答案】D

【解析】

如下图,先对网格进行编号,然后找出所有符合条件的平行四边形即可.

如下图,对网格编号

情况一:平行四边形的一个点在BF上,另两个点在MG上,有:

ABMIABQOABIGAFGIAFOQAFIM6

情况二:平行四边形的一个点在BF上,另两个点在PH上,有:

AEHVAEVNAENZAEZPACPZACZNACNVACVH8

情况三:其他符合条件平行四边形有:

AQNOAIYLATXIAHLIAPTIAGHIAMPIAZRNAVNAOKNAQSN11

故共有:6+8+11=25

故答案为:25

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,O为坐标原点,点A的坐标为(a,a),点B的坐标(b,c),且abc满足.

(1)a没有平方根,判断点A在第几象限并说明理由.

(2)ABOAOB,若OAB的面积大于5而小于8,求a的取值范围;

(3)若两个动点M2m,3m-5),N(n-1,-2n-3),请你探索是否存在以两个动点MN为端点的线段MNAB,且MN=AB.若存在,求出MN两点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.

(1)观察猜想

如图1,当点D在线段BC上时,

①BC与CF的位置关系为:   

②BC,CD,CF之间的数量关系为:   ;(将结论直接写在横线上)

(2)数学思考

如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.

(3)拓展延伸

如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=2,CD=BC,请求出GE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠B30°,边AB的垂直平分线分别交ABBC于点DE,且AE平分∠BAC

1)求∠C的度数;

2)若CE1,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点的坐标为(04),线段的位置如图所示,其中点的坐标为(),点的坐标为(3).

(1)将线段平移得到线段,其中点的对应点为,点的对应点为点.

①点平移到点的过程可以是:先向 平移 个单位长度,再向 平移 个单位长度;

②点的坐标为 .

(2)(1)的条件下,若点的坐标为(40),连接,画出图形并求的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,ADCE分别是△ABC的角平分线和中线,ADCEADCE4,则BC的长等于_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先化简,后求值

1(2a-3b)(3b2a)-a-2b2,其中:a=-2,b=3

2)[(xy+2(xy-2)-2x2y2+4÷(xy),其中x=10y=-.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料:一般地,个相同的因数相乘 ,记为.如,此时,叫做以为底的对数,记为(即).一般地,若,(),则叫做以为底的对数,记为(即).如,则叫做以为底的对数,记为(即).

1)计算以下各对数的值:__________,__________,__________.

2)观察(1)中三数之间满足怎样的关系式,之间又满足怎样的关系式;

3)由(2)的结果,你能归纳出一个一般性的结论吗?__________.(

4)根据幂的运算法则:以及对数的含义证明上述结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】苏州太湖养殖场计划养殖蟹和贝类产品,这两个品种的种苗的总投放量只有50吨,根据经验测算,这两个品种的种苗每投放一吨的先期投资,养殖期间的投资以及产值如下表(单位:万元/吨)

品种

先期投资

养殖期间投资

产值

贝类产品

0.9

0.3

0.33

蟹产品

0.4

1

2

养殖场受经济条件的影响,先期投资不超过36万元,养殖期间的投资不超过29万元,设贝类的种苗投放量为x吨,

1)求x的取值范围;

2)设这两个品种产出后的总产值为y(万元),试写出yx之间的函数关系式,并求出当x等于多少时,y有最大值?最大值是多少?

查看答案和解析>>

同步练习册答案