精英家教网 > 初中数学 > 题目详情

【题目】小米利用暑期参加社会实践,在妈妈的帮助下,利用社区提供的免费摊点卖玩具,已知小米所有玩具的进价均2个,在销售过程中发现:每天玩具销售量y件与销售价格x件的关系如图所示,其中AB段为反比例函数图象的一部分,BC段为一次函数图象的一部分,设小米销售这种玩具的日利润为w元.

根据图象,求出yx之间的函数关系式;

求出每天销售这种玩具的利润之间的函数关系式,并求每天利润的最大值;

若小米某天将价格定为超过4,那么要使得小米在该天的销售利润不低于54元,求该天玩具销售价格的取值范围.

【答案】 每天利润的最大值为72元; 时,小米的销售利润不低于54元.

【解析】

直接利用待定系数法得出反比例函数以及一次函数的解析式即可;

利用当时,当时,分别得出函数最值进而得出答案;

利用,得出x的值,进而得出答案.

段为反比例函数图象的一部分,

时,

段为一次函数图象的一部分,且

BC段为一次函数函数关系式为,有

解得:

时,

x之间的函数关系式为:

时,

随着x的增大,增大,也增大,

时,w取得最大值为40,

时,

时,w取得最大值为72,

综上所述,每天利润的最大值为72元;

由题意可知:

,即

解得:

由函数表达式及函数图象可知,要使

时,小米的销售利润不低于54元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知ABC中,B=CAB=8厘米,BC=6厘米,点DAB的中点.如果点P在线段BC上以每秒2厘米的速度由B点向C点运动,同时,点Q在线段CA上以每秒a厘米的速度由C点向A点运动,设运动时间为t(秒)(0≤t≤3).

1)用的代数式表示PC的长度;

2)若点PQ的运动速度相等,经过1秒后,BPDCQP是否全等,请说明理由;

3)若点PQ的运动速度不相等,当点Q的运动速度a为多少时,能够使BPDCQP全等?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,AB=AC=24DBC的中点,AC的垂直平分线EF分别交ACAD于点EFEF = 5 .

1)求点F到边AB的距离FG的长;

2)求 FB点的距离FB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,在△ABC与△ADE中,AB=ACAD=AE,∠BAC=DAE=40°,试探究线段BDCE的数量关系与直线BDCE相交构成的锐角的度数.

1)如图①,当点DE分别在△ABC的边ABAC上时,BDCE的数量关系是___________,直线BDCE相交构成的锐角的度数是_____________.

2)将图①中△DAE绕点A逆时针旋转一个角度到图②的位置,则(1)中的两个结论是否仍然成立?说明理由.

3)将图②中△DAE继续绕点A按逆时针方向继续旋转到点D落在CA的延长线时,请画出图形,并直接写出(1)中的两个结论是否仍然成立.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ACB=90°,ABC=30°,CDE是等边三角形,点D在边AB上.

(1)如图1,当点E在边BC上时,求证DE=EB;

(2)如图2,当点E在△ABC内部时,猜想EDEB数量关系,并加以证明;

(3)如图3,当点E在△ABC外部时,EHAB于点H,过点EGEAB,交线段AC的延长线于点G,AG=5CG,BH=3.求CG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠MON=90°,已知ABC中,AC=BC=13AB=10ABC的顶点AB分别在射线OMON上,当点BON上运动时,A随之在OM上运动,ABC的形状始终保持不变,在运动的过程中,点C到点O的最小距离为____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC=90°,AB=BC.直线l与以BC为直径的圆O相切于点C.点F是圆O上异于B、C的动点,直线BF与l相交于点E,过点F作AF的垂线交直线BC与点D.

(1)如果BE=15,CE=9,求EF的长;

(2)证明:①△CDF∽△BAF;②CD=CE;

(3)探求动点F在什么位置时,相应的点D位于线段BC的延长线上,且使BC=CD,请说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰Rt△ABC中,∠C=90°,D是斜边上AB上任一点,AECDEBFCDCD的延长线于FCHABH点,交AEG

(1)试说明AH=BH

(2)求证:BDCG

(3)探索AE与EF、BF之间的数量关系

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,M、N是对角线AC上的两个动点,P是正方形四边上的任意一点,且AB=4,MN=2,设AM=x,在下列关于△PMN是等腰三角形和对应P点个数的说法中,

x=0(即M、A两点重合)时,P点有6个;

P点有8个时,x=2﹣2;

△PMN是等边三角形时,P点有4个;

0<x<4﹣2时,P点最多有9个.

其中结论正确的是(  )

A. ①② B. ①③ C. ②③ D. ③④

查看答案和解析>>

同步练习册答案