【题目】如图,已知∠ABC=90°,AB=BC.直线l与以BC为直径的圆O相切于点C.点F是圆O上异于B、C的动点,直线BF与l相交于点E,过点F作AF的垂线交直线BC与点D.
(1)如果BE=15,CE=9,求EF的长;
(2)证明:①△CDF∽△BAF;②CD=CE;
(3)探求动点F在什么位置时,相应的点D位于线段BC的延长线上,且使BC=
CD,请说明你的理由.
![]()
【答案】(1)
(2)证明见解析(3)F在直径BC下方的圆弧上,且![]()
【解析】
(1)由直线l与以BC为直径的圆O相切于点C,即可得∠BCE=90°,∠BFC=∠CFE=90°,则可证得△CEF∽△BEC,然后根据相似三角形的对应边成比例,即可求得EF的长;
(2)①由∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,根据同角的余角相等,即可得∠ABF=∠FCD,同理可得∠AFB=∠CFD,则可证得△CDF∽△BAF;
②由△CDF∽△BAF与△CEF∽△BCF,根据相似三角形的对应边成比例,易证得
,又由AB=BC,即可证得CD=CE;
(3)由CE=CD,可得BC=
CD=
CE,然后在Rt△BCE中,求得tan∠CBE的值,即可求得∠CBE的度数,则可得F在⊙O的下半圆上,且
.
(1)解:∵直线l与以BC为直径的圆O相切于点C.
∴∠BCE=90°,
又∵BC为直径,
∴∠BFC=∠CFE=90°,
∵∠FEC=∠CEB,
∴△CEF∽△BEC,
∴
,
∵BE=15,CE=9,
即:
,
解得:EF=
;
(2)证明:①∵∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,
∴∠ABF=∠FCD,
同理:∠AFB=∠CFD,
∴△CDF∽△BAF;
②∵△CDF∽△BAF,
∴
,
又∵∠FCE=∠CBF,∠BFC=∠CFE=90°,
∴△CEF∽△BCF,
∴
,
∴
,
又∵AB=BC,
∴CE=CD;
(3)解:∵CE=CD,
∴BC=
CD=
CE,
在Rt△BCE中,tan∠CBE=
,
∴∠CBE=30°,
故
为60°,
∴F在直径BC下方的圆弧上,且
.
科目:初中数学 来源: 题型:
【题目】某年5月,我国南方某省A、B两市遭受严重洪涝灾害,1.5万人被迫转移,邻近县市C、D获知A、B两市分别急需救灾物资200吨和300吨的消息后,决定调运物资支援灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市.已知从C市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市的费用别为每吨15元和30元,设从D市运往B市的救灾物资为x吨.
(1)请填写下表
A(吨) | B(吨) | 合计(吨) | |
C |
|
| 240 |
D |
| x | 260 |
总计(吨) | 200 | 300 | 500 |
(2)设C、D两市的总运费为w元,求w与x之间的函数关系式,并写出自变量x的取值范围;
(3)经过抢修,从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少m元(m>0),其余路线运费不变.若C、D两市的总运费的最小值不小于10320元,求m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小米利用暑期参加社会实践,在妈妈的帮助下,利用社区提供的免费摊点卖玩具,已知小米所有玩具的进价均2元
个,在销售过程中发现:每天玩具销售量y件与销售价格x元
件的关系如图所示,其中AB段为反比例函数图象的一部分,BC段为一次函数图象的一部分,设小米销售这种玩具的日利润为w元.
根据图象,求出y与x之间的函数关系式;
求出每天销售这种玩具的利润
元
与
元
件
之间的函数关系式,并求每天利润的最大值;
若小米某天将价格定为超过4元
,那么要使得小米在该天的销售利润不低于54元,求该天玩具销售价格的取值范围.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,E为AC上一点,且AE=BC,过点A作AD⊥CA,垂足为A,且AD=AC,AB、DE交于点F.试判断线段AB与DE的数量关系和位置关系,并说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,已知直线y=-2x+4与x轴、y轴分别交于点A、C,以OA、OC为边在第一象限内作长方形OABC.
![]()
(1)求点A、C的坐标;
(2)将△ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式(图②);
(3)在坐标平面内,是否存在点P(除点B外),使得△APC与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料
小明遇到这样一个问题:求计算
所得多项式的一次项系数.
小明想通过计算
所得的多项式解决上面的问题,但感觉有些繁琐,他想探寻一下,是否有相对简洁的方法.
他决定从简单情况开始,先找
所得多项式中的一次项系数,通过观察发现:
![]()
也就是说,只需用
中的一次项系数1乘以
中的常数项3,再用
中的常数项2乘以
中的一次项系数2,两个积相加
,即可得到一次项系数.
延续上面的方法,求计算
所得多项式的一次项系数,可以先用
的一次项系数1,
的常数项3,
的常数项4,相乘得到12;再用
的一次项系数2,
的常数项2,
的常数项4,相乘得到16;然后用
的一次项系数3,
的常数项2
的常数项3,相乘得到18.最后将12,16,18相加,得到的一次项系数为46.
参考小明思考问题的方法,解决下列问题:
(1)计算
所得多项式的一次项系数为____________________.
(2)计算
所得多项式的一次项系数为_____________.
(3)若
是
的一个因式,求
、
的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将平行四边形ABCD的边DC延长至点E,使CE=DC,连接AE,交BC于点F.
(1)求证:△ABF≌△ECF;
(2)连接AC、BE,则当∠AFC与∠D满足什么条件时,四边形ABEC是矩形?请说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知:在四边形ABFC中,
=90
的垂直平分线EF交BC于点D,交AB于点E,且CF=AE
![]()
(1)试探究,四边形BECF是什么特殊的四边形;
(2)当
的大小满足什么条件时,四边形BECF是正方形?请回答并证明你的结论.
(特别提醒:表示角最好用数字)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com