【题目】如图,已知:在四边形ABFC中,=90的垂直平分线EF交BC于点D,交AB于点E,且CF=AE
(1)试探究,四边形BECF是什么特殊的四边形;
(2)当的大小满足什么条件时,四边形BECF是正方形?请回答并证明你的结论.
(特别提醒:表示角最好用数字)
【答案】(1)四边形BECF是菱形,证明见解析(2)当∠A=45。时,菱形BESF是正方形,证明见解析
【解析】(1)四边形BECF是菱形。·························1分
证明:EF垂直平分BC,
∴BF=FC,BE=EC,∴∠1=∠2······2分
∵∠ACB=90°
∴∠1+∠4=90°
∠3+∠2=90°
∴∠3=∠4
∴EC=AE·····················3分
∴BE=AE··················4分
∵CF=AE
∴BE=EC=CF=BF··········5分
∴四边形BECF是菱形·······6分
(2)当∠A=45。时,菱形BESF是正方形··7分
证明:
∵∠A=45。, ∠ACB=90。
∴∠1=45。····························8分
∴∠EBF=2∠A=90。
∴菱形BECF是正方形·················9分
(1)根据中垂线的性质:中垂线上的点到线段两个端点的距离相等,有BE=EC,BF=FC,又因为CF=BE,BE=EC=BF=FC,根据四边相等的四边形是菱形,所以四边形BECF是菱形;
(2)由菱形的性质知,对角线平分一组对角,即当∠ABC=45°时,∠EBF=90°,有菱形为正方形,根据直角三角形中两个角锐角互余得,∠A=45度;
科目:初中数学 来源: 题型:
【题目】如图,已知∠ABC=90°,AB=BC.直线l与以BC为直径的圆O相切于点C.点F是圆O上异于B、C的动点,直线BF与l相交于点E,过点F作AF的垂线交直线BC与点D.
(1)如果BE=15,CE=9,求EF的长;
(2)证明:①△CDF∽△BAF;②CD=CE;
(3)探求动点F在什么位置时,相应的点D位于线段BC的延长线上,且使BC=CD,请说明你的理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AO平分∠BAC,AO⊥BC,DE⊥BC,GH⊥BC,垂足分别为O、E、H,且DO∥AC,∠B=43°,则图中角的度数为47°的角的个数是( )
A. 5 B. 6 C. 7 D. 8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,M、N是对角线AC上的两个动点,P是正方形四边上的任意一点,且AB=4,MN=2,设AM=x,在下列关于△PMN是等腰三角形和对应P点个数的说法中,
①当x=0(即M、A两点重合)时,P点有6个;
②当P点有8个时,x=2﹣2;
③当△PMN是等边三角形时,P点有4个;
④当0<x<4﹣2时,P点最多有9个.
其中结论正确的是( )
A. ①② B. ①③ C. ②③ D. ③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,CD平分∠ACB交AB于点D,E为AC上一点,且DE∥BC
(1)求证:DE=CE;
(2)若∠A=90°,S△BCD=26,BC=13,求AD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕A逆时针方向旋转40°得到△ADE,点B经过的路径为弧BD,是图中阴影部分的面积为( )
A. π﹣6 B. π C. π﹣3 D. +π
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,要在湖两岸A,B两点之间修建一座观赏桥,由于条件限制,无法直接测量A、B两点间的距离,于是小明想出来这样一种做法:在AB的垂线BF上取两点C、D,使BC=CD,再定出BF的垂线DE,使A,C,E三点在一条直线上,这时测得DE=50米,则AB=_________米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某小组做“用频率估计概率”的实验时,绘出的某一结果出现的频率折线图,则符合这一结果的实验可能是( )
A. 抛一枚硬币,出现正面朝上
B. 掷一个正六面体的骰子,出现3点朝上
C. 一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃
D. 从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…,第n次移动到An.则△OA2A2018的面积是( )
A. 504m2 B. m2 C. m2 D. 1009m2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com