【题目】如图,PA,PB分别与⊙O相切于A,B两点,∠ACB=60°.
(1)求∠P的度数
(2)若⊙O的半径长为4cm,求图中阴影部分的面积
【答案】
(1)
解:连接OA、OB,
∵PA、PB是⊙O的切线,
∴OA⊥AP,OB⊥BP,
∴∠OAP=∠OBP=90°,
又∵∠AOB=2∠C=120°,
∴∠P=360°﹣(90°+90°+120°)=60°.
∴∠P=60°.
(2)
解:连接OP,如图所示:
∵PA、PB是⊙O的切线,
∴∠APO=∠APB=30°,
在RT△APO中,tan30°=,
∴AP===4cm,
∴S阴影=2S△AOP﹣S扇形=2×(×4×﹣)=(16﹣)(cm2).
【解析】(1)由PA与PB都为圆O的切线,利用切线的性质得到OA垂直于AP,OB垂直于BP,可得出两个角为直角,再由同弧所对的圆心角等于所对圆周角的2倍,由已知∠C的度数求出∠AOB的度数,在四边形PABO中,根据四边形的内角和定理即可求出∠P的度数.
(2)由S阴影=2×(S△PAO﹣S扇形)则可求得结果.
此题考查了圆的综合应用,涉及知识点有切线性质,圆心角和圆周角,四边形内角和以及扇形面积的 求法。
科目:初中数学 来源: 题型:
【题目】如图,对△ABC纸片进行如下操作: 第1次操作:将△ABC沿着过AB中点D1的直线折叠,使点A落在BC边上的A1处,折痕D1E1到BC的距离记作h1 , 然后还原纸片;
第2次操作:将△AD1E1沿着过AD1中点D2的直线折叠,使点A落在D1E1边上的A1处,折痕D1E1到BC的距离记作h2 , 然后还原纸片;
…
按上述方法不断操作下去…,经过第n次操作后得到的折痕DnEn到BC的距离记作hn , 若h=1,则hn的值不可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形OABC在直角坐标系中,点A的坐标为(5,0),对角线OB= ,反比例函数 经过点C,则k的值等于( )
A.12
B.8
C.15
D.9
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数y=x2+(1﹣m)x﹣m(其中0<m<1)的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴为直线l.设P为对称轴l上的点,连接PA、PC,PA=PC
(1)∠ABC的度数为
(2)求P点坐标(用含m的代数式表示)
(3)在坐标轴上是否存在着点Q(与原点O不重合),使得以Q、B、C为顶点的三角形与△PAC相似,且线段PQ的长度最小?如果存在,求出所有满足条件的点Q的坐标;如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线BC于点M,切点为N,则DM的长为( )
A.
B.
C.
D.2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一次函数y=2x﹣4的图象与x轴、y轴分别相交于点A、B,点P在该函数的图象上,P到x轴、y轴的距离分别为d1、d2 .
(1)当P为线段AB的中点时,求d1+d2的值。
(2)直接写出d1+d2的范围,并求当d1+d2=3时点P的坐标。
(3)若在线段AB上存在无数个P点,使d1+ad2=4(a为常数),求a的值。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点P是线段AB上与点A不重合的一点,且AP<PB.AP绕点A逆时针旋转角α(0°<α≤90°)得到AP1 , BP绕点B顺时针也旋转角α得到BP2 , 连接PP1、PP2 .
(1)如图1,当α=90°时,求∠P1PP2的度数;
(2)如图2,当点P2在AP1的延长线上时,求证:△P2P1P∽△P2PA;
(3)如图3,过BP的中点E作l1⊥BP,过BP2的中点F作l2⊥BP2 , l1与l2交于点Q,连接PQ,求证:P1P⊥PQ.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com