【题目】公安人员在破案时常常根据案发现场作案人员留下的脚印推断犯人的身高,如果用a表示脚印长度,b表示身高,关系类似满足于:
(1)某人脚印长度为24.5cm,则他的身高约为多少?(精确到1cm)
(2)在某次案件中,抓获了两可疑人员,甲的身高为1.83m,乙的身高为1.89m,在现场测量的脚印为26.3cm,请你帮助侦察一下。哪个可疑人员的可能性更大?
【答案】(1)他的身高约为168cm;(2)身高1.82m的甲可疑人员的可能性更大.
【解析】
(1)将a=24.5代入计算计算即可;
(2)将a=26.3代入求得b=181.03cm,然后根据甲、乙两人的身高与181.03cm的接近程度进行判断即可.
(1)已知如果用a表示脚印长度,b表示身高.关系类似满足于:b=7a-3.07.
若某人脚印长度为24.5cm,即a=24.5,
将其代入关系式可得,身高约为7×24.5-3.07=168.43≈168cm,
即他的身高约为168cm;
(2)根据现场测量的脚印长度为26.3cm,将这个数值代入b=7a-3.07中可得:罪犯身高为181.03cm≈1.81cm,比较可知:身高1.83m的甲可疑人员的可能性更大.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠A∶∠B∶∠C=3∶5∶10,又△MNC≌△ABC,则∠BCM∶∠BCN等于( )
A. 1∶2 B. 1∶3 C. 2∶3 D. 1∶4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,F是AD的中点,延长BC到点E,使CE=BC,连结DE,CF。
(1)求证:四边形CEDF是平行四边形;
(2)若AB=4,AD=6,∠B=60°,求DE的长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰RtABC 中,∠BAC=90°,在BC上截取BD=BA,作∠ABC的平分线与AD相交于点P,连接PC,若△ABC的面积为8cm2,则△BPC的面积为( )
A. 4cm2 B. 5cm2 C. 6cm2 D. 7cm2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b(k≠0)与反比例函数y= (m≠0)的图象有公共点A(1,2),D(﹣2,﹣1).直线l⊥x轴,与x轴交于点N(3,0),与一次函数和反比例函数的图象分别交于点B,C.
(1)求一次函数与反比例函数的解析式;
(2)求△ABC的面积;
(3)根据图象回答,在什么范围时,一次函数的值大于反比例函数的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,D、E是BC边上的点,连接AD,AE,以△ADE的边AE所在直线为对称轴作△ADE的轴对称图形△AD′E,连接D′C,若BD=CD′;
(1)求证:△ABD≌△ACD′;
(2)若∠BAC=120°,求∠DAE的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,把一个圆锥沿母线OA剪开,展开后得到扇形AOC,已知圆锥的高h为12cm,OA=13cm,则扇形AOC中 的长是cm(计算结果保留π).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为贯彻落实十九大会议精神,践行“绿水青山就是金山银山”的发展理念,积极推动生态文明理念融入学校教育,某中学拟举办“爱家乡、览名山”活动,围绕“哈尔滨市周边五大名山,即:香炉山、凤凰山、金龙山、帽儿山、二龙山,你最喜欢那一座山?每名学生必选且只选一座山”的问题在全校范围内随机抽取了部分学生进行问卷调查,根据调查结果绘制了如图所示的不完整统计图请根据统计图的信息回答下列问题:
本次调查共抽取了多少名学生?
求本次调查中,最喜欢风凰山的学生人数,并补全条形统计图;
若该中学共有学生1200人,请你估计该中学最喜欢香炉山的学生约有多少人.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD各个顶点的坐标分别为(﹣2,8),(﹣11,6),(﹣14,0),(0,0).
(1)求这个四边形的面积.
(2)如果把原来的四边形ABCD向下平移3个单位长度,再向左平移2个单位长度后得到新的四边形A1B2C3D4,请直接写出平移后的四边形各点的坐标和新四边形的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com