分析 (1)先推出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD=90°,证明OCED是矩形,利用勾股定理即可求出BC=OE;
(2)矩形的性质求得三角形OCD的面积,然后结合菱形的面积进行计算.
解答
(1)证明:∵DE∥AC,CE∥BD,
∴四边形OCED是平行四边形,
∵四边形ABCD是菱形,
∴∠COD=90°,
∴四边形OCED是矩形,
∴DE=OC,
∵OB=OD,∠BOC=∠ODE=90°,
∴BC=$\sqrt{O{B}^{2}+O{C}^{2}}$=$\sqrt{O{D}^{2}+D{E}^{2}}$=OE,即OE=BC;
(2)解:由(1)知,四边形OCED是矩形.
∵四边形OCED的面积是8cm2,
∴△OCD的面积为四边形OCED的面积的一半,为4cm2,
∴S菱形ABCD=4S△OCD=16cm2,
故答案是:16.
点评 本题考查了菱形的性质,矩形的判定与性质,勾股定理的应用,是基础题,熟记矩形的判定方法与菱形的性质是解题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com