【题目】如图,△ABC内接于⊙O,AB=BC,直径MN⊥BC于点D,与AC边相交于点E,若⊙O的半径为2,OE=2,则OD的长为_____.
【答案】2
【解析】
连接BO并延长交AC于F,如图,先利用垂径定理得到BF⊥AC,BD=CD,再证明Rt△BOD∽Rt△EOF得到, 则设OF=x,则OD=x, 接着证明Rt△DBO∽Rt△DEC,利用相似比得到, 所以DB2=3x2+2x然后利用勾股定理得到关于x的方程,最后解方程求出x后,计算x即可.
解:连接BO并延长交AC于F,如图,
∵BA=BC,
∴,
∴BF⊥AC,
∵直径MN⊥BC,
∴BD=CD,
∵∠BOD=∠EOF,
∴Rt△BOD∽Rt△EOF,
∴,
设OF=x,则OD=x,
∵∠DBO=∠DEC,
∴Rt△DBO∽Rt△DEC,
∴,即,
而BD=CD,
∴x,
在Rt△OBD中,,解得(舍去),
∴OD=x=2.
故答案为2.
科目:初中数学 来源: 题型:
【题目】已知□ABCD的两边AB、BC的长是关于x的一元二次方程方程的两个实数根.
(1)试说明:无论m取何值,原方程总有两个实数根;
(2)当m为何值时,□ABCD是菱形?求出这时菱形的边长;
(3)若AB﹦2,求BC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.
(1)当∠MAN绕点A旋转到BM=DN时(如图1),请你直接写出BM、DN和MN的数量关系:__________.
(2)当∠MAN绕点A旋转到BM≠DN时(如图2),(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.
(3)当∠MAN绕点A旋转到如图3的位置时,线段BM、DN和MN之间又有怎样的数量关系?请写出直接写出结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线与x轴交于A,B两点(点A在点B右侧),与y轴交于点C,点D是抛物线的顶点.
(1)如图1,连接AC、BC,若点P是直线AC上方抛物线上一动点,过点P作PE//BC交于点E,作PQ//y轴交AC于点Q,当△PQE周长最大时,若点M在y轴上,点N在x轴上,求PM+MNAN的最小值;
(2)如图2,点G为x轴正半轴上一点,且OG=OC,连接CG,过点作于点,将绕点顺时针旋转,记旋转中的为△,在旋转过程中,直线,分别与直线交于点,,△能否成为等腰三角形?若能请直接写出所有满足条件的的值;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,函数y=ax2﹣2ax﹣4a(x≥0)的图象记为M1,函数y=﹣ax2﹣2ax+4a(x<0)的图象记为M2,其中a为常数,且a≠0,图象M1,M2合起来得到的图象记为M.
(1)当图象M1的最低点到x轴距离为3时,求a的值.
(2)当a=1时,若点(m,)在图象M上,求m的值,
(3)点P、Q的坐标分别为(﹣5,﹣1),(4,﹣1),连结PQ.直接写出线段PQ与图象M恰有3个交点时a的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰△ABC中,AB=AC,以AB为直径作⊙O交边BC于点D,过点D作DE⊥AC交AC于点E,延长ED交AB的延长线于点F.
(1)求证:DE是⊙O的切线;
(2)若AB=8,AE=6,求BF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一次数学探究活动课中,某同学有一块矩形纸片,已知,,为射线上的一个动点,将沿折叠得到,若是直角三角形,则所有符合条件的点所对应的的和为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为( )
A. (﹣1,2) B. (,2) C. (3﹣,2) D. (﹣2,2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现有甲,乙两种机器人都被用来搬运某体育馆室内装潢材料甲型机器人比乙型机器人每小时少搬运30千克,甲型机器人搬运600千克所用的时间与乙型机器人搬运800千克所用的时间相同,两种机器人每小时分别搬运多少千克?设甲型机器人每小时搬运x千克,根据题意,可列方程为( )
A. =B. =
C. =D. =
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com