【题目】如图,四边形ABCD是平行四边形,点E是边CD上的一点,且BC=EC,CF⊥BE交AB于点F,P是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC.其中正确的有_____.(填序号)
科目:初中数学 来源: 题型:
【题目】利用勾股定理可以在数轴上画出表示的点,请依据以下思路完成画图,并保留画图痕迹:
第一步:(计算)尝试满足,使其中a,b都为正整数.你取的正整数a=____,b=________;
第二步:(画长为的线段)以第一步中你所取的正整数a,b为两条直角边长画Rt△OEF,使O为原点,点E落在数轴的正半轴上, ,则斜边OF的长即为.
请在下面的数轴上画图:(第二步不要求尺规作图,不要求写画法)
第三步:(画表示的点)在下面的数轴上画出表示的点M,并描述第三步的画图步骤:_______________________________________________________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知连接A.B两地之间的公路长为600千米,甲开车从A地出发沿着此公路以100千米/小时的速度前往B地,乙骑自行车从B地出发沿此公路匀速前往A地.已知乙比甲晚出发1小时,乙出发4小时后与甲第一次相遇,当甲到达B地侯立即原路原速返回.若乙第二次与甲相遇时乙共骑行了m千米,则m=______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y轴上的两点,经过点A、C、B的抛物线的一部分c1与经过点A、D、B的抛物线的一部分c2组合成一条封闭曲线,我们把这条封闭曲线成为“蛋线”.已知点C的坐标为(0,﹣ ),点M是抛物线C2:y=mx2﹣2mx﹣3m(m<0)的顶点.
(1)求A、B两点的坐标;
(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由;
(3)当△BDM为直角三角形时,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校八年级两个班各选派10名学生参加“垃圾分类知识竞赛,各参赛选手的成绩如下:
八(1)班:88,91,92,93,93,93,94,98,98,100;
八(2)班:89,93,93,93,95,96,96,98,98,99
通过整理,得到数据分析表如下
班级 | 最高分 | 平均分 | 中位数 | 众数 | 方差 |
八(1)班 | 100 | 93 | 93 | 12 | |
八(2)班 | 99 | 95 | 8.4 |
(1)求表中,,的值;
(2)依据数据分析表,有同学认为最高分在(1)班,(1)班的成绩比(2)班好.但也有同学认为(2)班的成绩更好.请你写出两条支持八(2)班成绩更好的理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,点D,E在⊙O上,∠A=2∠BDE,点C在AB的延长线上,∠C=∠ABD.
(1)求证:CE是⊙O的切线;
(2)若BF=2,EF=,求⊙O的半径长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠ACB=90°,经过点C的⊙O与斜边AB相切于点P.
(1)如图①,当点O在AC上时,试说明2∠ACP=∠B;
(2)如图②,AC=8,BC=6,当点O在△ABC外部时,求CP长的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用棋子摆成的“上”字型图案如图所示现察此图案的规律,并回答:
(1)依照此规律,第五个图形中共有 个棋子,第八个图形中共有 个棋子.
(2)第(为正整数)个图形中共有 个棋子.
(3)根据(2)中的结论,第几个图形中有2022个棋子?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com