精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是⊙O的直径,点D,E在⊙O上,∠A=2BDE,点CAB的延长线上,∠C=ABD.

(1)求证:CE是⊙O的切线;

(2)若BF=2,EF=,求⊙O的半径长.

【答案】(1)见解析;(2)

【解析】分析:(1)连接OE,首先得出△ABD∽△OCE,进而推出∠OCE=90°,即可得到结论;

(2)连接BE,得出△OBE∽△EBF,再利用相似三角形的性质得出OB的长,即可得到结论.

详解:(1)证明:连接OE,

则∠BOE=2BDE,又∠A=2BDE,

∴∠BOE=A,

∵∠C=ABD,A=BOE,

∴△ABD∽△OCE

∴∠ADB=OEC,

又∵AB是直径,

∴∠OEC=ADB=90°

CE与⊙O相切;

(2)连接EB,则∠A=BED,

∵∠A=BOE,

∴∠BED=BOE,

BOEBEF中,

BEF=BOE,EBF=OBE,

∴△OBE∽△EBF,

,则

OB=OE,

EB=EF,

BF=2,EF=

OB=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:

(1)九(1)班的学生人数为40,并把条形统计图补充完整;

(2)扇形统计图中m=10,n=20,表示“足球”的扇形的圆心角是72度;

(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD的边长为4,BAD=120°,点E是AB的中点,点F是AC上的一动点,则EF+BF的最小值是   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是平行四边形,点E是边CD上的一点,且BC=EC,CFBEAB于点F,PEB延长线上一点,下列结论:①BE平分∠CBF;CF平分∠DCB;BC=FB;PF=PC.其中正确的有_____.(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了了解某校学生对以下四个电视节目:最强大脑中国诗词大会朗读者出彩中国人的喜爱情况,随机抽取了部分学生进行调查,要求每名学生选出并且只能选出一个自己最喜爱的节目,根据调查结果,绘制了如下两幅不完整的统计图.

请你根据图中所提供的信息,完成下列问题:

本次调查的学生人数为______

在扇形统计图中,A部分所占圆心角的度数为______

请将条形统计图补充完整;

若该校共有3000名学生,估计该校最喜爱中国诗词大会的学生有多少名.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,关于x的二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,Ex轴上.

(1)求抛物线的解析式;

(2)DE上是否存在点PAD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;

(3)如图2,DE的左侧抛物线上是否存在点F,使2SFBC=3SEBC?若存在求出点F的坐标,若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将ABC绕顶点C旋转得到A′B′C,且点B刚好落在A′B′上.若∠A=25°,∠BCA′=45°,则∠A′BA等于( )

A. 40°B. 35°C. 30°D. 45°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一只箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同。

(1)从箱子中任意摸出一个球是白球的概率是多少?

(2)从箱子中任意摸出一个球,不将它放回箱子,搅匀后再摸出一个球,求两次摸出球的都是白球的概率,并画出树状图。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,添加下列条件仍然不能使ABCD成为菱形的是(  )

A. AB=BC B. AC⊥BD C. ∠ABC=90° D. ∠1=∠2

查看答案和解析>>

同步练习册答案