精英家教网 > 初中数学 > 题目详情

【题目】一个自然数的立方,可以分裂成若干个连续奇数的和。例如:分别可以按如图所示的方式分裂2个、3个和4个连续奇数的和,即=3+5;=7+9+11; =13+15+17+19;…;若也按照此规律来进行分裂,则分裂出的奇数中,最大的奇数是______.

【答案】41

【解析】

首先发现奇数的个数与前面的底数相同,再得出每一组分裂中的第一个数是底数×(底数﹣1+1,问题得以解决.

解:由23=3+5,分裂中的第一个数是:3=2×1+1

33=7+9+11,分裂中的第一个数是:7=3×2+1

43=13+15+17+19,分裂中的第一个数是:13=4×3+1

53=21+23+25+27+29,分裂中的第一个数是:21=5×4+1

63=31+33+35+37+39+41,分裂中的第一个数是:31=6×5+1

所以63分裂出的奇数中最大的是6×5+1+2×6﹣1=41

故答案为:41

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】用同样大小的黑色棋子按如图所示的规律摆放:

(1)第5个图形有多少颗黑色棋子?

(2)第几个图形有2013颗黑色棋子?请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)方法回顾:在学习三角形中位线时,为了探索三角形中位线的性质,思路如下:

第一步添加辅助线:如图1,在中,延长分别是的中点)到点,使得,连接

第二步证明,再证四边形是平行四边形,从而得出三角形中位线的性质结论:____________________________________(请用DE与BC表示)


(2)问题解决:如图2,在正方形ABCD中,E为AD的中点,G、F分别为AB、CD边上的点,若AG=2,DF=3,∠GEF=90°,求GF的长.

(3)拓展研究:如图3,在四边形ABCD中,∠A=105°,∠D=120°,E为AD的中点,G、F分别为AB、CD边上的点,若AG=,DF=2,∠GEF=90°,求GF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知数轴上三点MON对应的数分别为-103P为数轴上任意一点其对应的数为x

1MN的长为

2如果点P到点MN的距离相等那么x的值是

3数轴上是否存在点P使点P到点MN的距离之和是8若存在直接写出x的值若不存在请说明理由

4如果点P以每分钟1个单位长度的速度从点O向左运动同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时点P到点MN的距离相等t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,GBC边上一点,BEAGEDFAGF,连接DE

(1)求证:ABE≌△DAF

(2)若AF=1,SADE=8,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图A、B分别为数轴上的两点,A点对应的数为-10,B点对应的数为90.

(1)请写出与A,B两点距离相等的M点对应的数; 

(2)现在有一只电子蚂蚁PB点出发时,以3个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以2个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,求C点对应的数是多少.

(3)若当电子蚂蚁PB点出发时,以3个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以2个单位/秒的速度向右运动,求经过多长的时间两只电子蚂蚁在数轴上相距35个单位长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校在数学小论文评比活动中,共征集到论文100篇,对论文评比的分数(分数为整数)整理后,分组画出频数分布直方图(如图),已知从左到右5个小长方形的高的比为l:3:7:6:3,那么在这次评比中被评为优秀的论文(分数大于或等于80分为优秀)有____篇.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点D、E、F分别在正三角形ABC的三边上,且△DEF也是正三角形,若△ABC的边长为a,△DEF的边长为b.则△AEF的内切圆半径为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】a、b、c在数轴上的位置如图所示,则:

(1)“<、>、=”填空:a____0,b____0,c_____0;

(2)“<、>、=”填空:﹣a____0,a﹣b____0,c﹣a____0;

(3)化简:|﹣a|﹣|a﹣b|+|c﹣a|

查看答案和解析>>

同步练习册答案