【题目】如图,点A在线段BD上,在BD的同侧作等腰Rt△ABC和等腰Rt△ADE,其中∠ABC=∠AED=90°,CD与BE、AE分别交于点P、M.对于下列结论:①△CAM∽△DEM;②CD=2BE;③MPMD=MAME;④2CB2=CPCM.其中正确的是( )
A. ①②B. ①②③C. ①②③④D. ①③④
【答案】D
【解析】
①求出∠CAM=∠DEM=90°,根据相似三角形的判定推出即可;
②求出△BAE∽△CAD,得出比例式,把AC=AB代入,即可求出答案;
③通过等积式倒推可知,证明△PME∽△AMD即可;
④2CB2转化为AC2,证明△ACP∽△MCA,问题可证.
∵在BD的同侧作等腰Rt△ABC和等腰Rt△ADE,∠ABC=∠AED=90°,
∴∠BAC=45°,∠EAD=45°,
∴∠CAE=180°-45°-45°=90°,
即∠CAM=∠DEM=90°,
∵∠CMA=∠DME,
∴△CAM∽△DEM,故①正确;
由已知:AC=AB,AD=AE,
∴,
∵∠BAC=∠EAD
∴∠BAE=∠CAD
∴△BAE∽△CAD,
∴,即,即CD=BE,故②错误;
∵△BAE∽△CAD
∴∠BEA=∠CDA
∵∠PME=∠AMD
∴△PME∽△AMD
∴,
∴MPMD=MAME,故③正确;
由②MPMD=MAME
∠PMA=∠DME
∴△PMA∽△EMD
∴∠APD=∠AED=90°
∵∠CAE=180°-∠BAC-∠EAD=90°
∴△CAP∽△CMA
∴AC2=CPCM
∵AC=AB,
∴2CB2=CPCM,故④正确;
即正确的为:①③④,
故选D.
科目:初中数学 来源: 题型:
【题目】如图,抛物线经过的三个顶点,与轴相交于,点坐标为,点是点关于轴的对称点,点在轴的正半轴上.
(1)求该抛物线的函数解析式;
(2)点为线段上一动点,过点作轴,轴, 垂足分别为点,,当四边形为正方形时,求出点的坐标;
(3)将(2) 中的正方形沿向右平移,记平移中的正方形为正方形,当点和点重合时停止运动, 设平移的距离为,正方形的边与交于点,所在的直线与交于点, 连接,是否存在这样的,使是等腰三角形?若存在,求的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着我国经济社会的发展,人民对于美好生活的追求越来越高.某社区为了了解家庭对于文化教育的消费悄况,随机抽取部分家庭,对每户家庭的文化教育年消费金额进行问卷调査,根据调查结果绘制成两幅不完整的统计图表.
请你根据统计图表提供的信息,解答下列问题:
组別 | 家庭年文化教育消费金额x(元) | 户数 |
A | x≤5000 | 36 |
B | 5000<x≤10000 | m |
C | 10000<x≤15000 | 27 |
D | 15000<x≤20000 | 15 |
E | x>20000 | 30 |
(1)本次被调査的家庭有__________户,表中 m=__________;
(2)本次调查数据的中位数出现在__________组.扇形统计图中,D组所在扇形的圆心角是__________度;
(3)这个社区有2500户家庭,请你估计家庭年文化教育消费10000元以上的家庭有多少户?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,O为坐标原点,点A坐标为(﹣2,0),∠OAB=90°,∠AOB=30°,将△OAB绕点O按顺时针方向旋转,旋转角为α(0°<α≤150°),在旋转过程中,点A、B的对应点分别为点A′、B′.
(1)如图1,当α=60°时,直接写出点A′ 、B′ 的坐标;
(2)如图2,当α=135°时,过点B′作AB的平行线交AA′延长线于点C,连接BC,AB′.
①判断四边形AB′CB的形状,并说明理由,
②求此时点A′和点B′的坐标;
(3)当α由30°旋转到150°时,(2)中的线段B′C也随之移动,请求出B′C所扫过的区域的面积?(直接写出结果即可).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,且AB=AC,点D在⊙O上,AD⊥AB于点A, AD与 BC交于点E,F在DA的延长线上,且AF=AE.
(1)求证:BF是⊙O的切线;
(2)若AD=4,,求BC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以AB为直径的⊙O交△ABC的边AC于D、BC于E,过D作⊙O的切线交BC于F,交BA延长线于G,且DF⊥BC.
(1)求证:BA=BC;
(2)若AG=2,cosB=,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=﹣x2+bx+c(b,c是常数)经过A(0,2)、B(4,0)两点.
(1)求该抛物线的解析式和顶点坐标;
(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这条抛物线于N,求当t取何值时,MN有最大值?最大值是多少?
(3)在(1)的情况下,以A、M、N、D为顶点作平行四边形,请直接写出第四个顶点D的所有坐标(直接写出结果,不必写解答过程)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】荆州市滨江公园旁的万寿宝塔始建于明嘉靖年间,周边风景秀丽.现在塔底低于地面约7米,某校学生测得古塔的整体高度约为40米.其测量塔顶相对地面高度的过程如下:先在地面A处测得塔顶的仰角为30°,再向古塔方向行进a米后到达B处,在B处测得塔顶的仰角为45°(如图所示),那么a的值约为_____米(≈1.73,结果精确到0.1).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数yx3的图象与反比例函数y(k为常数,且k0)的图象交于A(1,a),B两点.
(1)求反比例函数的表达式及点B的坐标;
(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com