精英家教网 > 初中数学 > 题目详情
如图,已知AB是⊙O的直径,BP是⊙O的弦,弦CD⊥AB于点F,交BP于点G,E在CD的延长线上,EP=EG,
(1)求证:直线EP为⊙O的切线;
(2)点P在劣弧AC上运动,其他条件不变,若BG2=BF•BO.试证明BG=PG;
(3)在满足(2)的条件下,已知⊙O的半径为3,sinB=
3
3
.求弦CD的长.
考点:圆的综合题
专题:几何综合题
分析:(1)连结OP,先由EP=EG,证出∠EPG=∠BGF,再由∠BFG=∠BGF+∠OBP=90°,推出∠EPG+∠OPB=90°来求证.
(2)连结OG,由BG2=BF•BO,得出△BFG∽△BGO,得出∠BGO=∠BFG=90°,根据垂径定理可得出结论.
(3)连结AC、BC、OG,由sinB=
3
3
,求出OG,由(2)得出∠B=∠OGF,求出OF,再求出BF,FA,利用直角三角形来求斜边上的高,再乘以2得出CD长度.
解答:(1)证明:连结OP,

∵EP=EG,
∴∠EPG=∠EGP,
又∵∠EGP=∠BGF,
∴∠EPG=∠BGF,
∵OP=OB,
∴∠OPB=∠OBP,
∵CD⊥AB,
∴∠BFG=∠BGF+∠OBP=90°,
∴∠EPG+∠OPB=90°,
∴直线EP为⊙O的切线;

(2)证明:如图,连结OG,OP,

∵BG2=BF•BO,
BG
BO
=
BF
BG

∴△BFG∽△BGO,
∴∠BGO=∠BFG=90°,
由垂径定理知:BG=PG;

(3)解:如图,连结AC、BC、OG、OP,

∵sinB=
3
3

OG
OB
=
3
3

∵OB=r=3,
∴OG=
3

由(2)得∠EPG+∠OPB=90°,
∠B+∠BGF=∠OGF+∠BGF=90°,
∴∠B=∠OGF,
∴sin∠OGF=
3
3
=
OF
OG

∴OF=1,
∴BF=BO-OF=3-1=2,FA=OF+OA=1+3=4,
在Rt△BCA中,
CF2=BF•FA,
∴CF=
BF•FA
=
2×4
=2
2

∴CD=2CF=4
2
点评:本题主要考查了圆的综合题,解题的关键是通过作辅助线,找准角之间的关系,灵活运用直角三角形中的正弦值.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

用配方法解一元二次方程ax2+bx+c=0(a≠0),此方程可变形为(  )
A、(x+
b
2a
2=
b2-4ac
4a2
B、(x+
b
2a
2=
4ac-b2
4a2
C、(x-
b
2a
2=
b2-4ac
4a2
D、(x-
b
2a
2=
4ac-b2
4a2

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:直线l:y=-2,抛物线y=ax2+bx+c的对称轴是y轴,且经过点(0,-1),(2,0).
(1)求该抛物线的解析式;
(2)如图①,点P是抛物线上任意一点,过点P作直线l的垂线,垂足为Q,求证:PO=PQ.
(3)请你参考(2)中结论解决下列问题:
(i)如图②,过原点作任意直线AB,交抛物线y=ax2+bx+c于点A、B,分别过A、B两点作直线l的垂线,垂足分别是点M、N,连结ON、OM,求证:ON⊥OM.
(ii)已知:如图③,点D(1,1),试探究在该抛物线上是否存在点F,使得FD+FO取得最小值?若存在,求出点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

课本中有一道作业题:
有一块三角形余料ABC,它的边BC=120mm,高AD=80mm.要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.问加工成的正方形零件的边长是多少mm?
小颖解得此题的答案为48mm,小颖善于反思,她又提出了如下的问题.
(1)如果原题中要加工的零件是一个矩形,且此矩形是由两个并排放置的正方形所组成,如图1,此时,这个矩形零件的两条边长又分别为多少mm?请你计算.
(2)如果原题中所要加工的零件只是一个矩形,如图2,这样,此矩形零件的两条边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,⊙O为△ABC的内切圆.
(1)求⊙O的半径;
(2)点P从点B沿边BA向点A以1cm/s的速度匀速运动,以P为圆心,PB长为半径作圆,设点P运动的时间为t s,若⊙P与⊙O相切,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:等边△ABC,D、E分别是射线AC、射线BC上的点,且∠BAE=∠CBD<60°,DH⊥AB点H.

(1)如图1,当点D、E分别在边AC、边BC上时,求证:AC=2AH+BE;
(2)如图2,当点D、E分别在AC延长线和CB延长线上时,线段AC、AH、BE的数量关系为:
 

(3)在(2)的条件下,如图3,作EK∥BD交射线AC于点K,连接HK,交BC于点G,交BD于点P,当AC=6,BE=2时,求线段BP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,矩形ABCD中,AD=2AB,E是AD边上一点,DE=
1
n
AD(n为大于2的整数),连接BE,作BE的垂直平分线分别交AD,BC于点F,G,FG与BE的交点为O,连接BF和EG.
(1)试判断四边形BFEG的形状,并说明理由;
(2)当AB=a(a为常数),n=3时,求FG的长;
(3)记四边形BFEG的面积为S1,矩形ABCD的面积为S2,当
S1
S2
=
17
30
时,求n的值.(直接写出结果,不必写出解答过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,?ABCD的对角线AC、BD相交于点O,EF过点O且与AB,CD分别相交于点E、F,求证:△AOE≌△COF.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生700人,则据此估计步行的有
 
人.

查看答案和解析>>

同步练习册答案