精英家教网 > 初中数学 > 题目详情

【题目】如图,ADABC的角平分线,过点DAB,AC两边作垂线,垂足分别为E,F,那么下列结论中不一定正确的是(  )

A. BD=CD B. DE=DF C. AE=AF D. ADE=ADF

【答案】A

【解析】

根据角平分线上的点到角的两边距离相等可得DE=DF,然后利用“HL”证明RtADERtADF全等,根据全等三角形对应边相等可得AE=AF,ADE=ADF.

解:如图,∵ADABC的角平分线,DEAB,DFAC,
DE=DF,
RtADERtADF中,

RtADERtADF(HL),
AE=AF,ADE=ADF,即只有AB=AC时,BD=CD.
综上所述,结论错误的是BD=CD.
故选:A.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,小河边有两个村庄A、B,要在河边建一自来水厂向A村与B村供水。

(1)若要使水厂到A、B村的距离相等,则应选择在哪建厂? 

(2)若要使水厂到A、B村的水管最省料,应建在什么地方?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某科技有限公司准备购进AB两种机器人来搬运化工材料,已知购进A种机器人2个和B种机器人3个共需16万元,购进A种机器人3个和B种机器人2个共需14万元,请解答下列问题:

(1)求A、B两种机器人每个的进价;

(2)已知该公司购买B种机器人的个数比购买A种机器人的个数的2倍多4个,如果需要购买A、B两种机器人的总个数不少于28个,且该公司购买的A、B两种机器人的总费用不超过106万元,那么该公司有哪几种购买方案?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB=AC,CFABF,BEACE,CFBE交于点D.有下列结论:

①△ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上;④CFAB的垂直平分线.以上结论正确的有(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】正方形ABCD内接于⊙O,E是 的中点,连接BE、CE,则∠ABE=°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在路边安装路灯,灯柱BC高15m,与灯杆AB的夹角ABC为120°.路灯采用锥形灯罩,照射范围DE长为18.9m,从D、E两处测得路灯A的仰角分别为∠ADE=80.5°,∠AED=45°.求灯杆AB的长度.(参考数据:cos80.5°≈0.2,tan80.5°≈6.0)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一组对边平行,另一组对边相等且不平行的四边形叫做等腰梯形.
(1)类比研究
我们在学完平行四边形后,知道可以从对称性、边、角和对角线四个角度对四边形进行研究,完成表.

四边形

对称性

对角线

平行
四边形

两组对边分别平行,两组对边分别相等.

两组对角
分别相等.

对角线互相平分.

等腰
梯形

轴对称图形,过平行的一组对边中点的直线是它的对称轴.

一组对边平行,另一组对边相等.


(2)演绎论证
证明等腰梯形有关角和对角线的性质.
已知:在等腰梯形ABCD中,AD∥BC,AB=DC,AC、BD是对角线.
求证:
证明:
揭示关系
我们可以用图来揭示三角形和一些特殊三角形之间的关系.

(3)请用类似的方法揭示四边形、对角线相等的四边形、平行四边形、矩形以及等腰梯形之间的关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)计算:(a+b)2﹣b(2a+b)

(2)解不等式:(3x+4)(3x-4)<9(x-2)(x+3)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,矩形OABC的顶点AC的坐标分别为(100),(04),点DOA的中点,点PBC上运动,当ODP是腰长为5的等腰三角形时,点P的坐标为______

查看答案和解析>>

同步练习册答案