精英家教网 > 初中数学 > 题目详情

【题目】如图,在直角坐标系中,矩形OABC的顶点A在x轴上,顶点C在y轴上,B(4,3),连接OB,将△OAB沿直线OB翻折,得△ODB,OD与BC相交于点E,若双曲线 经过点E,则k= ;

【答案】
【解析】解:B点的坐标为(4,3),则OA=CB=4,OC=AB=3,
易知 OBD≌OBA,则∠D=∠OAB=90°,BD=OC=3.
四边形OABC是矩形,则∠OCB=90°,即∠OCB=∠D.
因为∠OEC=∠BED,所以 OEC≌ BED,CE=DE.
令CE=DE=x,则有: CE+BE=x+ =4,解得x= .
E点的坐标为( ,3).
双曲线过点E,则k= ×3= .
故答案为 .
双曲线过点E,关键是求出E点的坐标,已知B点的坐标是(4,3),显然E点和B点的纵坐标是相同的,即E点的纵坐标是3。 BOD由 OBA折叠而来,所以二者是全等的,进而可以证明 OEC≌ BED,CE=DE。从而求出CE的长度,即E点的横坐标。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,已知△ABC的三个顶点的坐标分别为A﹣23),B﹣60),C﹣10).

1)请直接写出点B关于点A对称的点的坐标;

2)将△ABC绕坐标原点O逆时针旋转90°,画出图形,直接写出点B的对应点的坐标;

3)请直接写出:以ABC为顶点的平行四边形的第四个顶点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(4,0)两点,与y轴相交于点C,连结BC,点P为抛物线上一动点,过点P作x轴的垂线l,交直线BC于点G,交x轴于点E.
(1)求抛物线的表达式;
(2)当P位于y轴右边的抛物线上运动时,过点C作CF⊥直线l,F为垂足,当点P运动到何处时,以P,C,F为顶点的三角形与△OBC相似?并求出此时点P的坐标;

(3)如图2,当点P在位于直线BC上方的抛物线上运动时,连结PC,PB,请问△PBC的面积S能否取得最大值?若能,请求出最大面积S,并求出此时点P的坐标,若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,CD、C′D′分别是Rt△ABC,Rt△A′B′C′斜边上的高,且CB=C′B′,CD=C′D′.求证:△ABC≌△A′B′C′.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线y=mx2-2mx+m-1(m>0)与x轴的交点为A,B,顶点为C,将抛物线在A,C,B之间的部分记为图象E(A,B两点除外).
(1)求抛物线的顶点坐标.
(2)AB=6时,经过点C的直线y=kx+b(k≠0)与图象E有两个交点,结合函数的图象,求k的取值范围.
(3)若横、纵坐标都是整数的点叫整点.
①当m=1时,求线段AB上整点的个数;
②若抛物线在点A,C,B之间的图象E与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某种产品形状是长方形,长为8cm,它的展开图如图:

(1)求长方体的体积;

(2)请为厂家设计一种包装纸箱,使每箱能装10件这种产品,要求没有空隙且要使该纸箱所用材料尽可能少(纸箱的表面积尽可能小)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学期结束前,学校想调查学生对七年级数学实验教材的意见,特向七年级400名学生作问卷调查,其结果如下:

(1)计算出每一种意见的人数占调查人数的百分比;

(2)从统计图中你能得出什么结论

意见

非常喜欢

喜欢

有一点喜欢

不喜欢

人数

200

160

32

8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形 ABCD 的对角线 AC BD 相交于点 O,CEBD,DEAC.

(1)求证:四边形 OCED 为菱形

(2)AD=7,AB=4,求四边形 OCED的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC是等腰直角三角形,∠C=90°,点DAB的中点,点E,F分别在BC,AC上,且AF=CE.

(1)填空:∠A的度数是   

(2)探究DEDF的关系,并给出证明.

查看答案和解析>>

同步练习册答案