精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,CD、C′D′分别是Rt△ABC,Rt△A′B′C′斜边上的高,且CB=C′B′,CD=C′D′.求证:△ABC≌△A′B′C′.

【答案】见解析

【解析】分析欲证△ABC≌△A′B′C′,根据已知条件,已经有∠ACB=∠A′C′B′=90°,CB=C′B′,即已知一边一角,由三角形全等的判定定理可知,还需有一对角相等或者边AC=A′C′.而根据已知条件CB=C′B′,CD=C′D′,易证Rt△CDB≌Rt△C′D′B′,得出∠B=∠B′,从而根据ASA证明出△ABC≌△A′B′C′.

详解

证明:∵CD⊥AB,C'D'⊥A'B' (已知)

∴∠CDB=∠C'D'B'=90°.(垂直的意义)

在RtCDB和RtC'D'B'中,

CB=C'B',CD=C'D',(已知)

∴Rt△CDB≌Rt△C'D'B'(HL),

∴∠B=∠B',(全等三角形的对应角相等)

∵△ABC,△A'B'C'都是直角三角形 (已知)

∴∠ACB=∠A'C'B'=90°(直角三角形的意义)

ABC和A'B'C'中,

∠B=∠B'

CD=C'D'

∠ACB=∠A'B'C'

∴△ABC≌△A'B'C'(ASA)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①b2>4ac;②2a+b=0;③a+b+c=0;④若点B(﹣ ,y1)、C(﹣ ,y2)为函数图象上的两点,则y1<y2 , 其中正确结论是:(填上序号即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合题
(1)
.
(2)解分式方程:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1 , 另两张直角三角形纸片的面积都为S2 , 中间一张正方形纸片的面积为S3 , 则这个平行四边形的面积一定可以表示为( )

A.4S1
B.4S2
C.4S2+S3
D.3S1+4S3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.

(1)求证:AE=DF;

(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;

(3)当t为何值时,△DEF为直角三角形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】10分已知:如图,在ABC中AB=AC,ADBC,垂足为D,AN是ABC外角CAM的平分线,CEAN,垂足为E,猜想四边形ADCE的形状,并给予证明

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,矩形OABC的顶点A在x轴上,顶点C在y轴上,B(4,3),连接OB,将△OAB沿直线OB翻折,得△ODB,OD与BC相交于点E,若双曲线 经过点E,则k= ;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】今年11月读书节,深圳市统计某学校九年级学生读书状况,制作了两幅不完整的统计图如图所示.

(1)x的值为 ,参加调查的总人数为

(2)补全条形统计图

(3)若全市有6.7万学生,则看3本及3本书以上的学生约有多少人

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,直线轴、轴分别交于点、点,与双曲线 交于两点,分别过点、点轴,轴,垂足分别为点、点

(1)求线段的长;

(2)若

①求直线的解析式;

②请你判断线段与线段的大小关系,并说明理由.

查看答案和解析>>

同步练习册答案