【题目】如图,抛物线 与直线 交于A、B两点,点A在x轴上,点B的横坐标是2.点P在直线AB上方的抛物线上,过点P分别作PC∥y轴、PD∥x轴,与直线AB交于点C、D,以PC、PD为边作矩形PCQD,设点Q的坐标为(m,n).
(1)点A的坐标是 , 点B的坐标是;
(2)求这条抛物线所对应的函数关系式;
(3)求m与n之间的函数关系式(不要求写出自变量n的取值范围);
(4)请直接写出矩形PCQD的周长最大时n的值.
【答案】
(1)(﹣2,0);(2,2)
(2)
解:由题意,得 ,
解得
所以,这条抛物线所对应的函数关系式为y=﹣ x2+ x+3;
(3)
解:∵点Q的坐标为(m,n),
∴ x+1=n,
解得x=2n﹣2,
所以,点C的坐标为(2n﹣2,n),
点D的坐标为(m, m+1),
∴点P的坐标为(2n﹣2, m+1),
将(2n﹣2, m+1)代入y=﹣ x2+ x+3,得﹣ ×(2n﹣2)2+ ×(2n﹣2)+3= m+1,
整理得,m=﹣4n2+10n﹣2,
所以,m,n之间的函数关系式是m=﹣4n2+10n﹣2;
(4)
解:∵C(2n﹣2,n),P(2n﹣2, m+1),Q(m,n),
∴PC= m+1﹣n,CQ=m﹣(2n﹣2)=m﹣2n+2,
∴矩形PCQD的周长=2( m+1﹣n+m﹣2n+2),
=3m﹣6n+6,
=3(﹣4n2+10n﹣2)﹣6n+6,
=﹣12n2+24n,
=﹣12(n﹣1)2+12,
∴当n=1时,矩形PCQD的周长最大.
【解析】解:(1)令y=0,则 x+1=0,
解得x=﹣2,
所以,点A(﹣2,0),
∵点B的横坐标是2,
∴y= ×2+1=2,
∴B(2,2);
【考点精析】利用二次函数的图象和二次函数的性质对题目进行判断即可得到答案,需要熟知二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.
科目:初中数学 来源: 题型:
【题目】某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.
(1)求甲、乙两种树苗每棵的价格各是多少元?
(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰直角△ABC中,∠BAC=90,AD⊥BC于D,∠ABC的平分线分别交AC、AD于E、F两点,M为EF的中点,延长AM交BC于点N,连接DM.下列结论:①AE=AF;②AM⊥EF;③AF=DF;④DF=DN,其中正确的结论有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程k2x2﹣2(k+1)x+1=0有两个实数根.
(1)求k的取值范围;
(2)当k=1时,设所给方程的两个根分别为x1和x2 , 求 + 的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,△ABC内接于⊙O,点D在OC的延长线上,sinB= ,∠CAD=30°.
(1)求证:AD是⊙O的切线;
(2)若OD⊥AB,BC=5,求AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将长方形ABCD沿着对角线BD折叠,使点C落在处,交AD于点E.
(1)试判断△BDE的形状,并说明理由;
(2)若,,求△BDE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用,那么服药后2小时时血液中含药量最高,达每毫升8微克(1000微克=1毫克),接着逐步衰减,10小时时血液中含药量为每毫升4微克,每毫升血液中含药量y(微克),随时间x(小时)的变化如图所示.当成人按规定剂量服药后:
(1)求y与x之间的解析式;
(2)如果每毫升血液中含药量不低于3微克或3微克以上时,在治疗疾病时是有效的,那么这个有效时间是多少小时?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】感知:如图①,点E在正方形ABCD的BC边上,BF⊥AE于点F,DG⊥AE于点G.可知△ADG≌△BAF.(不要求证明)
拓展:如图②,点B、C在∠MAN的边AM、AN上,点E, F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求证:△ABE≌△CAF.
应用:如图③,在等腰三角形ABC中,AB=AC,AB>BC.点D在边B上.CD=2BD.点E, F在线段AD上.∠1=∠2=∠BAC.若△ABC的面积为9,则△ABE与△CDF的面积之和为_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2015年4月30日,苏州吴江蚕种全部发放完毕,共计发放蚕种6460张(每张上的蚕卵有200粒左右),涉及6个镇,各镇随即开始孵化蚕种,小李所记录的蚕种孵化情况如表所示,则可以估计蚕种孵化成功的概率为( )
累计蚕种孵化总数/粒 | 200 | 400 | 600 | 800 | 1000 | 1200 | 1400 |
孵化成功数/粒 | 181 | 362 | 541 | 718 | 905 | 1077 | 1263 |
A.0.95
B.0.9
C.0.85
D.0.8
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com