精英家教网 > 初中数学 > 题目详情

【题目】已知:在中,,过点向过点的直线作垂线,垂足分别为于点

1)如图,求证:

2)如图,连接,若,在不添加任何辅助线的情况下,请直接写出四个角,使写出的每一个角的正切值都等于

【答案】1)证明见解析;(2

【解析】

1)由同角的余角相等求得,然后利用AAS定理证明,从而求得CD=BE

2)由题意得AD=CE=2CD=2DE=2EB,然后根据正切的定义和等腰直角三角形的性质求角的正切值,从而求解.

解:(1)∵

又∵

又∵

2)∵

AD=CE=2CD=2DE=2EB

∴在RtACD中,

RtDAE中,

RtBCE中,

AC=BCDE=BE

∴∠ABD+CBD=45°,∠BCE+CBD=EDB=45°

∴∠ABD=BCE

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知抛物线为常数,),其对称轴是,与轴的一个交点在之间.有下列结论:①;②;③若此抛物线过两点,则,其中,正确结论的个数为( )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,直线分别与x轴,y轴交于点,点C是第一象限内的一点,且,抛物线经过两点,与x轴的另一交点为D

1)求此抛物线的解析式;

2)判断直线的位置关系,并证明你的结论;

3)点Mx轴上一动点,在抛物线上是否存在一点N,使以四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,有两个形状完全相同的直角三角形ABCEFG叠放在一起(点A与点E重合),已知AC=8cmBC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O是△EFG斜边上的中点.
如图②,若整个△EFG从图①的位置出发,以1cm/s的速度沿射线AB方向平移,在△EFG平移的同时,点P从△EFG的顶点G出发,以1cm/s的速度在直角边GF上向点F运动,当点P到达点F时,点P停止运动,△EFG也随之停止平移.设运动时间为xs),FG的延长线交ACH,四边形OAHP的面积为ycm2)(不考虑点PGF重合的情况).

1)当x为何值时,OPAC
2)求yx之间的函数关系式,并确定自变量x的取值范围;
3)是否存在某一时刻,使四边形OAHP面积与△ABC面积的比为1324?若存在,求出x的值;若不存在,说明理由.(参考数据:1142=129961152=132251162=134564.42=19.364.52=20.254.62=21.16

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数的图象与轴交于AB两点,与y轴交于点C,且关于直线对称,点A的坐标为(-10)

(1)求二次函数的表达式;

(2)连接BC,若点Py轴上时,BPBC的夹角为15°,求线段CP的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点为矩形的对角线上一动点,,点边的中点,则周长的最小值是_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)如图1A是⊙O上一动点,P是⊙O外一点,在图中作出PA最小时的点A

2)如图2RtABC中,∠C90°AC8BC6,以点C为圆心的⊙C的半径是3.6Q是⊙C上一动点,在线段AB上确定点P的位置,使PQ的长最小,并求出其最小值.

3)如图3,矩形ABCD中,AB6BC9,以D为圆心,3为半径作⊙DE为⊙D上一动点,连接AE,以AE为直角边作RtAEF,∠EAF90°tanAEF,试探究四边形ADCF的面积是否有最大或最小值,如果有,请求出最大或最小值,否则,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,抛物线yx2+bx+cx轴相交于AB两点,与y轴相交于点C,若A(﹣10),且OC3OA

1)填空:b   c   

2)在图1中,若点M为抛物线上第四象限内一动点,顺次连接ACCMMB,求四边形ACMB面积的最大值;

3)在图2中,将直线BC沿x轴翻折交y轴于点N,过点B的直线与抛物线相交于点D.若∠NBD=∠OCA,请直接写出点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解某学校九年级学生每周平均课外阅读时间的情况,随机抽查了该学校九年级部分同学,对其每周平均课外阅读时间进行统计,绘制了如下的统计图①和图②.请根据相关信息,解答下列问题:

1)该校抽查九年级学生的人数为    ,图①中的a值为    

2)求统计的这组数据的众数、中位数和平均数.

    

查看答案和解析>>

同步练习册答案