【题目】(1)如图1,A是⊙O上一动点,P是⊙O外一点,在图中作出PA最小时的点A.
(2)如图2,Rt△ABC中,∠C=90°,AC=8,BC=6,以点C为圆心的⊙C的半径是3.6,Q是⊙C上一动点,在线段AB上确定点P的位置,使PQ的长最小,并求出其最小值.
(3)如图3,矩形ABCD中,AB=6,BC=9,以D为圆心,3为半径作⊙D,E为⊙D上一动点,连接AE,以AE为直角边作Rt△AEF,∠EAF=90°,tan∠AEF=,试探究四边形ADCF的面积是否有最大或最小值,如果有,请求出最大或最小值,否则,请说明理由.
【答案】(1)作图见解析;(2)PQ长最短是1.2;(3)四边形ADCF面积最大值是,最小值是.
【解析】
(1)连接线段OP交⊙C于A,点A即为所求;
(2)过C作CP⊥AB于Q,P,交⊙C于Q,这时PQ最短,根据勾股定理以及三角形的面积公式即可求出其最小值;
(3)△ACF的面积有最大和最小值,取AB的中点G,连接FG,DE,证明△FAG~△EAD,进而证明点F在以G为圆心1为半径的圆上运动,过G作GH⊥AC于H,交⊙G于F1,GH反向延长线交⊙G于F2,①当F在F1时,△ACF面积最小,分别求出△ACD的面积和△ACF的面积的最小值即可得出四边形ADCF的面积的最小值;②当F在F2时,四边形ADCF的面积有最大值,在⊙G上任取异于点F2的点P,作PM⊥AC于M,作GN⊥PM于N,利用矩形的判定与性质以及三角形的面积公式即可得出得出四边形ADCF的面积的最大值.
解:(1)连接线段OP交⊙C于A,点A即为所求,如图1所示;
(2)过C作CP⊥AB于Q,P,交⊙C于Q,这时PQ最短.
理由:分别在线段AB,⊙C上任取点P',点Q',连接P',Q',CQ',如图2,
由于CP⊥AB,根据垂线段最短,CP≤CQ'+P'Q',
∴CO+PQ≤CQ'+P'Q',
又∵CQ=CQ',
∴PQ<P'Q',即PQ最短.
在Rt△ABC中,,
∴,
∴PQ=CP﹣CQ=6.8﹣3.6=1.2,
∴.
当P在点B左侧3.6米处时,PQ长最短是1.2.
(3)△ACF的面积有最大和最小值.
如图3,取AB的中点G,连接FG,DE.
∵∠EAF=90°,,
∴
∵AB=6,AG=GB,
∴AC=GB=3,
又∵AD=9,
∴,
∴
∵∠BAD=∠B=∠EAF=90°,
∴∠FAG=∠EAD,
∴△FAG~△EAD,
∴,
∵DE=3,
∴FG=1,
∴点F在以G为圆心1为半径的圆上运动,
连接AC,则△ACD的面积=,
过G作GH⊥AC于H,交⊙G于F1,GH反向延长线交⊙G于F2,
①当F在F1时,△ACF面积最小.理由:由(2)知,当F在F1时,F1H最短,这时△ACF的边AC上的高最小,所以△ACF面积有最小值,
在Rt△ABC中,
∴,
在Rt△ACH中,,
∴,
∴△ACF面积有最小值是:;
∴四边形ADCF面积最小值是:;
②当F在F2时,F2H最大理由:在⊙G上任取异于点F2的点P,作PM⊥AC于M,作GN⊥PM于N,连接PG,则四边形GHMN是矩形,
∴GH=MN,
在Rt△GNP中,∠NGF2=90°,
∴PG>PN,
又∵F2G=PG,
∴F2G+GH>PN+MN,即F2H>PM,
∴F2H是△ACF的边AC上的最大高,
∴面积有最大值,
∵,
∴△ACF面积有最大值是;
∴四边形ADCF面积最大值是;
综上所述,四边形ADCF面积最大值是,最小值是.
科目:初中数学 来源: 题型:
【题目】如图,直线与函数的图象交于点.
(1)求的值;
(2)过点作轴的平行线,直线与直线交于点,与函数的图象交于点,与轴交于点.
①若点是线段的中点时,则点的坐标是______,的值是______;(直接写答案)
②当时,直接写出的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,每个图案均由边长相等的黑、白两色正方形按规律拼接而成,照此规律,第n个图案中白色正方形比黑色正方形多________个.(用含n的代数式表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:在中,,,过点、向过点的直线作垂线,垂足分别为、,交于点.
(1)如图,求证:;
(2)如图,连接、,若,在不添加任何辅助线的情况下,请直接写出四个角,使写出的每一个角的正切值都等于.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小明在商城二楼地板处发现对五层居民楼顶防雨棚一侧斜面与点在一条直线上,此时测得,仰角是,上到九楼在地板边沿点测得居民楼顶斜面顶端点俯角是,已知商城每层楼高米,居民楼每层楼高米,试计算居民楼顶防雨棚一侧斜面的长度.(结果保留精确到米)(参考数据:,,,,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,点P1(x1,y1)、P2(x2,y2)、P3(x3,y3),……,Pn(xn,yn)均在反比例函数y=(x>0)的图象上,点Q1、Q2、Q3、……、Qn均在x轴的正半轴上,且△OP1Q1、△Q1P2Q2、△Q2P3Q3、…、△Qn﹣1PnQn均为等腰直角三角形,OQ1、Q1Q2、Q2Q3、……、Qn﹣1Qn分别为以上等腰直角三角形的底边,则y1+y2+y3+…+y2019的值等于_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】中国古代有若辉煌的数学成就,《周髀算经》,《九章算术》,《海岛算经》(分别用字母A、B、C依次表示这三部专著)等是我国古代数学的重要文献.将A、B、C这三个字母分别写在3张完全相同的不透明卡片的正面上,把这3张卡片背面朝上洗均后放在桌面上小明先从中随机抽取张卡片,记录下卡片上的字母,放回后洗均,再由小强从中随机抽取张卡片,请用列表法或画树状图法,求小明和小强抽到的卡片上的字母相同的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点B的坐标为(3,0),将直线沿y轴向上平移3个单位长度后恰好经过B、C两点.
(1)求直线BC及抛物线的解析式;
(2)设抛物线的顶点为D,点P在抛物线的对称轴上,且,求点P的坐标;
(3)连结CD,求∠OCA与∠OCD两角和的度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com