精英家教网 > 初中数学 > 题目详情
如图,△ABC中,AB=AC,∠BAC=90°,D为BC上一点,过D作DE⊥AD,且DE=AD,连BE,求∠DBE的度数.
分析:作AM⊥BC于M,作EN⊥BC于N,求出AM=BM,证△AMD≌△DNE,推出EN=DM,AM=DN=BM,求出BN=DM=EN,即可得出答案.
解答:解:作AM⊥BC于M,作EN⊥BC于N,
∵△ABC中,∠BAC=90°,AM⊥BC,
∴AM-MB=CM,∠AMD=90°,∠END=90°,
∵AD⊥DE,
∴∠ADE=90°,
∴∠ADM+∠EDN=90°,∠EDN+∠NED=90°,
∴∠MDA=∠NED,
在△AMD和△DNE中
∠ADM=∠DEN
∠AMD=∠DNE
AD=DE

∴△AMD≌△DNE,
∴DM=EN,DN=AM=BM,
∴DN-MN=BM-NM,
∴BN=DM=EN,
∵EN⊥BC,
∴∠ENB=90°,
∴∠DBE=∠BEN=45°.
点评:本题考查了全等三角形的性质和判定,直角三角形斜边上中线性质的应用,注意:全等三角形的对应边相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案