精英家教网 > 初中数学 > 题目详情
4.如图所示,DE∥FG∥BC,且S△ADE=S四边形DFGE=S四边形BCGF,则DE:BC等于(  )
A.1:2B.1:4C.1:$\sqrt{3}$D.1:$\sqrt{2}$

分析 由平行线的性质可得△ADE∽△AFC∽△ABC,进而利用相似三角形面积比等于对应边的平方比,即可得出结论.

解答 解:∵DE∥FG∥BC,
∴△ADE∽△ABC,
∵S△ADE=S梯形DFGE=S梯形FBCG
∴$\frac{{S}_{△ADE}}{{S}_{△ABC}}$=$\frac{1}{3}$,
∵相似三角形的面积比等于对应边长的平方比,
∴DE:BC=1:$\sqrt{3}$.
故选C.

点评 本题主要考查了相似三角形的判定及性质以及三角形面积比与对应边长之间的关系,能够熟练掌握相似三角形的性质并运用是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

14.若x<-2,则化简$\sqrt{{x}^{2}}$-$\sqrt{{x}^{2}+4x+4}$=-x.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.若最简二次根式$\frac{2}{3}$$\sqrt{3{m}^{2}-2}$与$\root{{n}^{2}-1}{4{m}^{2}-10}$是同类二次根式,求m2+n2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.关于变量x,y的关系式:①5x-2y=1;②y=|3x|;③x•y2=2,其中表示y是x的函数的是(  )
A.B.②③C.①②D.①②③

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.某高科技发展公司投资500万元,成功研制出一种市场需求量较大的产品,并投入资金1500万元进行批量生产.已知生产每件产品的成本为40元,在销售过程中发现:当销售单价定为100元时,年销售量为20万件;销售单价每增加10元,年销售量减少1万件.
(1)计算销售单价为160元时的年获利,并说明同样的年获利,销售单价还可以定为多少元?
(2)公司计划在第一年按年获利最大确定的销售单价进行销售;第二年获利不低于1130万元,请说明第一年单价和第二年单价的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.某地质公园为了方便游客,计划修建一条栈道BC连接两条进入观景台OA的栈道AC和OB,其中AC⊥BC,同时为减少对地质地貌的破坏,设立一个圆形保护区⊙M(如图所示),M是OA上一点,⊙M与BC相切,观景台的两端A、O到⊙M上任意一点的距离均不小于80米.经测量,OA=60米,OB=170米,tan∠OBC=$\frac{4}{3}$.
(1)求栈道BC的长度; 
(2)当点M位于何处时,可以使该圆形保护区的面积最大?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.下图是小红在某路口统计20分钟各种车辆通过情况制成的统计表,其中空格处的字迹已模糊,但小红还记得
7:50~8:00时段内的电瓶车车辆与8:00~8:10时段内的货车车辆数之比是7:2
 电瓶车公交车货车小轿车合计
7:50~8:00 5 63138
8:00~8:10 5 4577
合计67 30108 
(1)若在7:50~8:00时段,经过的小轿车数量正好是电瓶车数量的$\frac{9}{8}$,求这个时段内的电瓶车通过的车辆数;
(2)根据上述表格数据,求在7:50~8:00和8:00~8:10两个时段内电瓶车和货车的车辆数;
(3)据估计,在所调查的7:50~8:00时段内,每增加1辆公交车,可减少8辆小轿车行驶,为了使该时段内小轿车流量减少到比公交车多13辆,则在该路口应再增加几辆公交车.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.两圆的半径分别为3和4,圆心距为1,则两圆的位置关系是内切.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,正方形ABCD中,∠DAF=25°,AF交对角线BD于点E,连接EC,则∠BCE=65°.

查看答案和解析>>

同步练习册答案