精英家教网 > 初中数学 > 题目详情
9.某地质公园为了方便游客,计划修建一条栈道BC连接两条进入观景台OA的栈道AC和OB,其中AC⊥BC,同时为减少对地质地貌的破坏,设立一个圆形保护区⊙M(如图所示),M是OA上一点,⊙M与BC相切,观景台的两端A、O到⊙M上任意一点的距离均不小于80米.经测量,OA=60米,OB=170米,tan∠OBC=$\frac{4}{3}$.
(1)求栈道BC的长度; 
(2)当点M位于何处时,可以使该圆形保护区的面积最大?

分析 (1)过C点作CE⊥OB于E,过A作AF⊥CE于F,设出AF,然后通过解直角三角形求得CE,进一步得到BE,然后由勾股定理得出答案;
(2)设BC与⊙M相切于Q,延长QM交直线BO于P,设OM=x,把PB、PQ用含有x的代数式不是,再结合观景台的两端A、O到⊙M上任意一点的距离均不小于80米列式求得x的范围,得到x取最小值时圆的半径最大,即圆形保护区的面积最大.

解答 解:(1)如图1,过C点作CE⊥OB于E,过A作AF⊥CE于F,
∵∠ACB=90°∠BEC=90°,
∴∠ACF=∠CBE,
∴tan∠ACF=tan∠OBC=$\frac{4}{3}$,
设AF=4x,则CF=3x,
∵∠AOE=∠AFE=∠OEF=90°,
∴OE=AF=4x,EF=OA=60,
∴CE=3x+60,
∵tan∠OBC=$\frac{4}{3}$.
∴BE=$\frac{3}{4}$CE=$\frac{9}{4}$x+45,
∴OB=OE+BE=4x+$\frac{9}{4}$x+45,
∴4x+$\frac{9}{4}$x+45=170,
解得:x=20,
∴CE=120(米),BE=90(米),
∴BC=$\sqrt{B{E}^{2}+C{E}^{2}}$=150(米).
(2)如图2,设BC与⊙M相切于Q,延长QM交直线BO于P,
∵∠POM=∠PQB=90°,
∴∠PMO=∠CBO,
∴tan∠OBC=$\frac{4}{3}$.
∴tan∠PMO=$\frac{4}{3}$.
设OM=x,则OP=$\frac{4}{3}$x,PM=$\frac{5}{3}$x,
∴PB=$\frac{4}{3}$x+170,
在RT△PQB中,tan∠PBQ=$\frac{PQ}{BQ}$=$\frac{4}{3}$.
∴$\frac{PQ}{PB}$=$\frac{4}{5}$,
∴PQ=$\frac{4}{5}$($\frac{4}{3}$x+170)=$\frac{16}{15}$x+136,
设⊙M的半径为R,
∴R=MQ=$\frac{16}{15}$x+136-$\frac{5}{3}$x=136-$\frac{3}{5}$x,
∵A、O到⊙M上任意一点的距离均不小于80米,
∴R-AM≥80,R-OM≥80,
∴136-$\frac{3}{5}$x-(60-x)≥80,136-$\frac{3}{5}$x-x≥80,
解得:10≤x≤35,
∴当且仅当x=10时R取最大值,
∴OM=10米时,保护区的面积最大.

点评 本题考查了圆的切线,考查了直线和圆的位置关系,解题的关键在于对题意的理解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.如图,已知PA是⊙O的切线,切点为A,PC与⊙O相交于B,C点,且AB⊥PC于点B,点D为$\widehat{BC}$上一点,连接AD于点E,且∠PAB=∠DAB.
(1)求证:AB=BD;
(2)若AB=8,tan∠P=$\frac{4}{3}$,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.当a-1<a<1时,$\frac{2a+2}{a-1}$值为负数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,将正方形纸片ABCD折叠,使点B落在CD边上一点E(不与点C,D重合),压平后得到折痕MN.
(1)当$\frac{CE}{CD}$=$\frac{1}{2}$时,求$\frac{AM}{BN}$的值;
(2)若$\frac{CE}{CD}$=$\frac{1}{n}$(n为整数),求$\frac{AM}{BN}$的值(用含n的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图所示,DE∥FG∥BC,且S△ADE=S四边形DFGE=S四边形BCGF,则DE:BC等于(  )
A.1:2B.1:4C.1:$\sqrt{3}$D.1:$\sqrt{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.已知,点E是AB的中点,AF=BD,BD=5,AC=7,求DC.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.若某人沿坡度i=1:2的斜坡前进了10m,则他所在位置比原来的位置升高2$\sqrt{5}$m.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.(1)$\frac{3x-5}{x-2}$=2-$\frac{x+1}{x-2}$     
(2)$\frac{x-2}{x+2}$-$\frac{12}{{x}^{2}-4}$=1        
(3)$\frac{2}{x-1}$-$\frac{3}{x+1}$=$\frac{x+3}{{x}^{2}-1}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图,函数y1=x-1与y2=$\frac{2}{x}$的图象交于点A(2,1),B(-1,-2),则使y1>y2的x的范围是(  )
A.x>2B.-1<x<0或x>2C.-1<x<2D.x<-1或x>2

查看答案和解析>>

同步练习册答案