精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,二次函数的图象与坐标轴交于A、B、C三点,其中点A的坐标为(0,8),点B的坐标为(﹣4,0)

(1)求该二次函数的表达式及点C的坐标;

(2)点D的坐标为(0,4),点F为该二次函数在第一象限内图象上的动点,连接CD、CF,以CD、CF为邻边作平行四边形CDEF,设平行四边形CDEF的面积为S

①求S的最大值;

②在点F的运动过程中,当点E落在该二次函数图象上时,请直接写出此时S的值

【答案】(1)C(8,0);(2)50;18

【解析】

试题分析:(1)把A点和B点坐标代入得到关于b、c的方程组,然后解方程组求出b、c即可得到抛物线的解析式;然后计算函数值为0时对应的自变量的值即可得到C点坐标

(2)①连结OF,如图,设F(t,),利用S四边形OCFD=S△CDF+S△OCD=S△ODF+S△OCF,利用三角形面积公式得到S△CDF=,再利用二次函数的性质得到△CDF的面积有最大值,然后根据平行四边形的性质可得S的最大值;

②由于四边形CDEF为平行四边形,则CD∥EF,CD=EF,利用C点和D的坐标特征可判断点C向左平移8个单位,再向上平移4个单位得到点D,则点F向左平移8个单位,再向上平移4个单位得到点E,即E(t﹣8,),然后把E(t﹣8,)代入抛物线解析式得到关于t的方程,再解方程求出t后计算△CDF的面积,从而得到S的值.

试题解析:(1)把A(0,8),B(﹣4,0)代入,解得,所以抛物线的解析式为

当y=0时,,解得,所以C点坐标为(8,0);

(2)①连结OF,如图,设F(t,),∵S四边形OCFD=S△CDF+S△OCD=S△ODF+S△OCF,∴S△CDF=S△ODF+S△OCF﹣S△OCD===

当t=3时,△CDF的面积有最大值,最大值为25,∵四边形CDEF为平行四边形,∴S的最大值为50;

②∵四边形CDEF为平行四边形,∴CD∥EF,CD=EF,∵点C向左平移8个单位,再向上平移4个单位得到点D,∴点F向左平移8个单位,再向上平移4个单位得到点E,即E(t﹣8,),∵E(t﹣8,)在抛物线上,∴ ,解得t=7,当t=7时,S△CDF==9,∴此时S=2S△CDF=18.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是(

A.4.8 B.5 C.6 D.7.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在数轴上表示﹣3的点离原点的距离等于(  )

A. 3 B. ﹣3 C. ±3 D. 6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】AO的最小距离为1,最大距离为3,则O的半径长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线(a>0)与x轴相交于A,B两点(点A在点B的左侧),点P是抛物线上一点,且PB=AB,∠PBA=120°,如图所示

(1)求抛物线的解析式

(2)设点M(m,n)为抛物线上的一个动点,且在曲线PA上移动

①当点M在曲线PB之间(含端点)移动时,是否存在点M使△APM的面积为?若存在,求点M的坐标;若不存在,请说明理由

②当点M在曲线BA之间(含端点)移动时,求|m|+|n|的最大值及取得最大值时点M的坐标

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某服装店新开张,第一天销售服装a件,第二天比第一天少销售14件,第三天的销售量是第二天的2倍多10件,则这三天销售了(  )件.

A. 3a﹣42 B. 3a+42 C. 4a﹣32 D. 3a+32

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,m,n是一元二次方程的两个实数根,且|m|<|n|,抛物线的图象经过点A(m,0),B(0,n),如图所示

(1)求这个抛物线的解析式;

(2)设(1)中的抛物线与x轴的另一个交点为抛物线的顶点为D,试求出点C,D的坐标,并判断△BCD的形状;

(3)点P是直线BC上的一个动点(点P不与点B和点C重合),过点P作x轴的垂线,交抛物线于点M,点Q在直线BC上,距离点P为个单位长度,设点P的横坐标为t,△PMQ的面积为S,求出S与t之间的函数关系式

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB=90,AB=10,AC=6,点E、F分别是边AC、BC上的动点,过点EEDAB于点D,过点FFGAB于点G,DG的长始终为2.

(1)当AD=3时,求DE的长;

(2)当点E、F在边AC、BC上移动时,设

关于的函数解析式。

(3)在点E、F移动过程中,AEDCEF能否相似,若能,求AD的长;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若三个连续正整数的和小于39,则这样的正整数中,最大的一组数的和是__________

查看答案和解析>>

同步练习册答案