【题目】一次函数y=kx+b与反比例函数y=的图象相交于A(﹣1,4),B(2,n)两点,直线AB交x轴于点D.
(1)求一次函数与反比例函数的表达式;
(2)过点B作BC⊥y轴,垂足为C,连接AC交x轴于点E,求△AED的面积S.
【答案】(1)y=﹣2x+2;(2).
【解析】
试题分析:(1)把A(﹣1,4)代入反比例函数y=可得m的值,即确定反比例函数的解析式;再把B(2,n)代入反比例函数的解析式得到n的值;然后利用待定系数法确定一次函数的解析式;
(2)先由BC⊥y轴,垂足为C以及B点坐标确定C点坐标,再利用待定系数法求出直线AC的解析式,进一步求出点E的坐标,然后计算得出△AED的面积S.
解:(1)把A(﹣1,4)代入反比例函数y=得,m=﹣1×4=﹣4,
所以反比例函数的解析式为y=﹣;
把B(2,n)代入y=﹣得,2n=﹣4,
解得n=﹣2,
所以B点坐标为(2,﹣2),
把A(﹣1,4)和B(2,﹣2)代入一次函数y=kx+b得,
,
解得,
所以一次函数的解析式为y=﹣2x+2;
(2)∵BC⊥y轴,垂足为C,B(2,﹣2),
∴C点坐标为(0,﹣2).
设直线AC的解析式为y=px+q,
∵A(﹣1,4),C(0,﹣2),
∴,
解,
∴直线AC的解析式为y=﹣6x﹣2,
当y=0时,﹣6x﹣2=0,解答x=﹣,
∴E点坐标为(﹣,0),
∵直线AB的解析式为y=﹣2x+2,
∴直线AB与x轴交点D的坐标为(1,0),
∴DE=1﹣(﹣)=,
∴△AED的面积S=××4=.
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD为矩形,过点D作对角线BD的垂线,交BC的延长线于点E,取BE的中点F,连接DF,DF=4.设AB=x,AD=y,则x2+(y﹣4)2的值为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列方程中没有实数根的是( )
A. x2+x+2=0 B. x2+3x+2=0 C. 2015x2+11x﹣20=0 D. x2﹣x﹣1=0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以△ABC的一边AB为直径的半圆与其它两边AC,BC的交点分别为D、E,且=.
(1)试判断△ABC的形状,并说明理由.
(2)已知半圆的半径为5,BC=12,求sin∠ABD的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某水库的水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y米与时间x小时(0≤x≤5)的函数关系式为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点P(2x,3x﹣1)是平面直角坐标系上的点.
(1)若点P在第一象限的角平分线上,求x的值;
(2)若点P在第三象限,且到两坐标轴的距离和为11,求x的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com