精英家教网 > 初中数学 > 题目详情
在Rt△ABC中,∠C=90°,AB=13,sinA=
12
13
,求△ABC的周长与面积.
考点:解直角三角形
专题:
分析:由正弦值可求得BC,再根据勾股定理可求得AC,则可求得其周长和面积.
解答:解:∵∠C=90°,AB=13,
∴sinA=
BC
AB

BC
13
=
12
13

∴BC=12,
在Rt△ABC中由勾股定理可求得AC=5,
∴△ABC的周长为:AB+AC+BC=13+5+12=30,
△ABC的面积为:
1
2
×12×5=30.
点评:本题主要考查三角函数定义和勾股定理,利用正弦函数的定义求得BC的长度是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

x与3的和不小于-6,用不等式表示为
 
;“a与b的差是非负数”用不等式表示
 

查看答案和解析>>

科目:初中数学 来源: 题型:

解方程:
x-1
x+1
-
4
x2-1
=1.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB是圆O的直径,点C,D分别在两个半圆上(不与点A、B重合),AD=BD.
(1)若∠ADC=15°,AD=2,则∠CBD=
 
度,CD的长是
 

(2)CD=
5
,求AC+BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

小明在收集数据时,不慎将每一个数的小数点都前移了一位,得到一组数据后的方差为21.96,那么实际方差是(  )
A、21.96
B、2196
C、219.6
D、0.2196

查看答案和解析>>

科目:初中数学 来源: 题型:

化简
1-sin8°
的结果是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知在△ABC中,∠C=90°,设sinB=n,当∠B是最小的内角时,n的取值范围是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

△ABC中,AB=AC,∠BAC=120°,AB的垂直平分线交BC于点D,交AB于点E,若DE=1,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知
n
m
<0,|m|=7,|n|=9.试求
m-n
2(m+n)
的值.

查看答案和解析>>

同步练习册答案