【题目】如图,四边形是矩形,点在线段的延长线上,连接交于点,,点是的中点.若,,则的长为__.
【答案】
【解析】
根据直角三角形斜边上的中线等于斜边的一半可得AG=DG,然后根据等边对等角的性质可得∠ADG=∠DAG,再结合两直线平行,内错角相等可得∠ADG=∠CED,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠AGE=2∠ADG,从而得到∠AED=∠AGE,再利用等角对等边的性质得到AE=AG,然后利用勾股定理列式计算即可得解.
解:∵四边形ABCD是矩形,点G是DF的中点,
∴AG=DG,
∴∠ADG=∠DAG,
∵AD∥BC,
∴∠ADG=∠CED,
∴∠AGE=∠ADG+∠DAG=2∠CED,
∵∠AED=2∠CED,
∴∠AED=∠AGE,
∴AE=AG=8,
在Rt△ABE中,AB=,
故答案为:.
科目:初中数学 来源: 题型:
【题目】如图所示,观察数轴,请回答:
(1)点C与点D的距离为______ ,点B与点D的距离为______ ;
(2)点B与点E的距离为______ ,点A与点C的距离为______ ;
发现:在数轴上,如果点M与点N分别表示数m,n,则他们之间的距离可表示为 ______(用m,n表示)
(3)利用发现的结论解决下列问题: 数轴上表示x的点P与B之间的距离是1,则 x 的值是______ .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知平行四边形ABCD,BC∥x轴,BC=6,点A的坐标为(1,4),点B的坐标为(﹣3,﹣4),点C在第四象限,点P是平行四边形ABCD边上的一个动点.
(1)若点P在边CD上,BC=CP,求点P的坐标;
(2)如图2,若点P在边AB,AD上,点P关于坐标轴对称的点Q落在直线y=﹣x+1上,求点P的坐标;
(3)若点P在边AB,AD,BC上,点E是AB与y轴的交点,如图3,过点P作y轴的平行线PF,过点E作x轴的平行线E,它们相交于点F,将△PEF沿直线PE翻折,当点F的对应点落在坐标轴上时,求点P的坐标.(直接写出答案)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,点O是边BC的中点,连接AO并延长,交DC延长线于点E,连接AC,BE.
(1)求证:四边形ABEC是平行四边形;
(2)当∠D=50°,∠AOC=100°时,判断四边形ABEC的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,长方形纸片 ABCD,AD∥BC,将长方形纸片折叠, 使点 D 与点 B 重合,点 C 落在点 C'处,折痕为 EF.
(1)求证:BE=BF.
(2)若∠ABE=18°,求∠BFE 的度数.
(3)若 AB=4,AD=8,求 AE 的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的南岸边点A处,测得河的北岸边点B在其北偏东45°方向,然后向西走60 m到达点C,测得点B在点C的北偏东60°方向,如图②.
(1)求∠CBA的度数;
(2)求出这段河的宽(结果精确到1 m,参考数据:≈1.41,≈1.73).
① ②
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,两棵树的高度分别为AB=6m,CD=8m,两树的根部间的距离AC=4m,小强正在距树AB的20m的点P处从左向右前进,如果小强的眼睛与地面的距离为1.6m,当小强前进多少米时,就恰好不能看到CD的树顶D?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com