精英家教网 > 初中数学 > 题目详情

【题目】如图,甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.分析甲、乙两人前往目的地所行驶的路程S(千米)随时间t(分钟)变化的函数图象,解决下列问题:

(1)求出甲、乙两人所行驶的路程SSt之间的关系式;

(2)甲行驶10分钟后,甲、乙两人相距多少千米?

【答案】(1)S=0.5t;S=t﹣6;(2)甲行驶10分钟后,甲、乙两人相距1千米

【解析】

设出函数解析式,用待定系数法求解即可.

代入中的函数解析式即可求出.

(1)由图象设甲的解析式为:S=kt,代入点,解得:k=0.5;

所以甲的解析式为:S=0.5t

同理可设乙的解析式为:S=mt+b,代入点

可得:

解得:

所以乙的解析式为S

(2)当t=10时,S=0.5×10=5(千米),S=10-6=4(千米),

5-4=1(千米),

答:甲行驶10分钟后,甲、乙两人相距1千米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读下面的文字,解答问题.

大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用-1来表示的小数部分,你同意小明的表示方法吗?

事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.

请解答:已知:10+=x+y,其中x是整数,0<y<1,x-y的相反数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.
(1)P是 上一点(不与C、D重合),求证:∠CPD=∠COB;
(2)点P′在劣弧CD上(不与C、D重合)时,∠CP′D与∠COB有什么数量关系?请证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD中,E是BC边的中点,连接DE并延长交AB的延长线于点F,则在题中条件下,下列结论不能成立的是( )

A. BE=CE B. AB=BF C. DE=BE D. AB=DC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】据报道,深圳今年4 月2 日至4 月8 日每天的最高气温变化如图所示.则关于这七天的最高气温的数据,下列判断中错误的是(
A.平均数是26
B.众数是26
C.中位数是27
D.方差是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现在,共享单车已遍布深圳街头,其中较为常见的共享单车有“A.摩拜单车”、“B.小蓝单车”、“C.OFO单车”、“D.小鸣单车”、“E.凡骑绿畅”等五种类型.为了解市民使用这些共享单车的情况,某数学兴趣小组随机统计部分正在使用这些单车的市民,并将所得数据绘制出了如下两幅不完整的统计图表 (图1、图2):

根据所给信息解答下列问题:
(1)此次统计的人数为人;根据已知信息补全条形统计图;
(2)在使用单车的类型扇形统计图中,使用E 型共享单车所在的扇形的圆心角为度;
(3)据报道,深圳每天有约200余万人次使用共享单车,则其中使用E型共享单车的约有万人次.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形中,,点点出发,沿路线运动,到点停止;点点出发,沿运动,到点停止.若点、点同时出发,点的速度为每秒,点的速度为每秒秒时点、点同时改变速度,点的速度变为每秒,点的速度变为每秒.如图是点出发秒后的面积(秒)的函数关系图象;图是点出发秒后的面积(秒)的函数关系图象.根据图象:

的值;

设点出发(秒)后离开点的路程为,请写出的函数关系式,并求出点相遇时的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图已知四边形ABCD是平行四边形,则下列结论中不正确的是(  )

A. AB=BC时,四边形ABCD是菱形

B. ACBD时,四边形ABCD是菱形

C. 当∠ABC=90°时,四边形ABCD是矩形

D. AC=BD时,四边形ABCD是正方形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】旅游公司在景区内配置了50辆观光车供游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数.发现每天的营运规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.
(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入﹣管理费)
(2)当每辆车的日租金为多少元时,每天的净收入最多?

查看答案和解析>>

同步练习册答案