精英家教网 > 初中数学 > 题目详情

【题目】如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.已知原传送带AB长为4米.

(1)求新传送带AC的长度.

(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点5米的货物MNQP是否需要挪走,并说明理由.

参考数据:

【答案】(1)AC的长度约为8米;(2)货物MNQP不应挪走.

【解析】

试题分析:(1)在构建的直角三角形中,首先求出两个直角三角形的公共直角边,进而在RtACD中,求出AC的长.

(2)通过解直角三角形,可求出BD、CD的长,进而可求出BC、PC的长.然后判断PC的值是否大于2米即可.

解:(1)如图,

在RtABD中,AD=ABsin45°=4×=4.

在RtACD中,

∵∠ACD=30°

AC=2AD=8

即新传送带AC的长度约为8米;

(2)结论:货物MNQP不用挪走. (5分)

解:在RtABD中,BD=ABcos45°=4×=4.

在RtACD中,CD=ACcos30°=2

CB=CD﹣BD=2﹣4≈0.9.

PC=PB﹣CB≈4﹣0.9=3.1>2,

货物MNQP不应挪走.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB是半圆O的直径,C、D是半圆O上的两点,且ODBC,OD与AC交于点E.

(1)若B=70°,求CAD的度数;

(2)若AB=4,AC=3,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线yax2bxc上部分点的横坐标x,纵坐标y的对应值如下表所示.

x

3

2

1

0

1

y

12

2

4

6

4

给出下列说法:抛物线与y轴的交点为(06)抛物线的对称轴是在y轴的右侧;抛物线一定经过点(30)x<0时,函数值yx的增大而减小.

从表中可知,上述说法正确的有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,点P沿边DA从点D开始向点A以1cm/s的速度移动;同时,点Q沿边AB、BC从点A开始向点C以2cm/s的速度移动.当点P移动到点A时,P、Q同时停止移动.设点P出发xs时,PAQ的面积为ycm2,y与x的函数图象如图,则线段EF所在的直线对应的函数关系式为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB和抛物线的交点是A(0,-3)B(59),已知抛物线的顶点D的横坐标是2.

(1)求抛物线的解析式及顶点坐标;

(2)轴上是否存在一点C,与AB组成等腰三角形?若存在,求出点C的坐标,若不存在,请说明理由;

(3)在直线AB的下方抛物线上找一点P,连接PAPB使得△PAB的面积最大,并求出这个最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线y轴交于点C0,2),它的顶点为D1,m),且.

1)求m的值及抛物线的表达式;

2)将此抛物线向上平移后与x轴正半轴交于点A,与y轴交于点B,且OA=OB.若点A是由原抛物线上的点E平移所得,求点E的坐标;

(3)在(2)的条件下,点P是抛物线对称轴上的一点(位于x轴上方),且APB=45°.求P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC为直角三角形,∠C=90°,BC=2cm,A=30°,四边形DEFG为矩形,DE=2cm,EF=6cm,且点C、B、E、F在同一条直线上,点B与点E重合.RtABC以每秒1cm的速度沿矩形DEFG的边EF向右平移,当点C与点F重合时停止.设RtABC与矩形DEFG的重叠部分的面积为ycm2,运动时间xs.能反映ycm2xs之间函数关系的大致图象是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,对角线ACBD相交于点O,过点CCE∥BD,过点DDE∥ACCEDE相交于点E

1)求证:四边形CODE是矩形.

2)若AB=5AC=6,求四边形CODE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知矩形ABCD,按照下列操作作图:①以A为圆心,AC长为半径画弧交AD的延长线于点E;②以E为圆心,EC长为半径画弧交DE的延长线于点F;③分别以CF为圆心,大于CF的长为半径画弧,两弧相交于点N;④作射线EN,根据作图,若∠ACB=72°,则∠FEN的度数为(  )

A. 54° B. 63° C. 72° D. 75°

查看答案和解析>>

同步练习册答案