精英家教网 > 初中数学 > 题目详情

【题目】对于一元二次方程,如果方程有两个实数根,那么(说明:定理成立的条件.例如方程中,,所以该方程有两个不等的实数解.设方程的两根为,那么,请根据上面阅读材料解答下列各题:

1)已知方程的两根为,求的值;

2)已知是一元二次方程的两个实数根,是否存在实数,使成立?若存在,求出的值;若不存在,请说明理由.

【答案】1;(2)不存在.

【解析】

1)利用根与系数的关系写出x1+x2x1x2的值,将通分后代入求值可得答案;

2)先求出△>0时,k的取值范围,利用根与系数的关系写出用k表示x1+x2x1x2的值.把等式化简,代入x1+x2x1x2的式子,求出k值与其取值范围对照可得出结论.

解:(1)∵

2)∵方程有两个实数根,

解得,与矛盾

∴不存在的值,使成立.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,AB是⊙O的直径,BC是弦,∠B=30°,延长BAD,使∠BDC=30°

(1)求证:DC是⊙O的切线;

(2)AB=2,求DC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在O 的内接ABC ,∠ABC=30°,AC 的延长线与过点 B O 的切线相交于点 D,若O 的半径 OC=1,BDOC,则 CD 的长为(

A. 1+ B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某单位宿舍用电规定如下:如果每户一个月的用电量不超过度,那么这个月只需要交10元电费,若超过度,则这个月除了要交10元电费外,超过的部分还要按元交费,下表是某户5月份和6月份的用电和交费情况,求的值.

月份

用电量(度)

交电费总数(元)

5

80

25

6

45

10

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在正方形中,对角线相交于点平分,交于点

(1).求证:

(2).从点出发,沿着线段向点运动(不与点重合),同时点从点出发,沿着的延长线运动,点的运动速度相同,当动点停止运动时,另一动点也随之停止运动.如图2平分,交于点,过点,垂足为,请猜想三者之间的数量关系,并证明你的猜想;

(3).在(2)的条件下,当时,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正方形ABCD,顶点A13)、B11)、C31).规定把正方形ABCD先沿x轴翻折,再向左平移1个单位为一次变换,如此这样,连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为( )

A.-20122B.-2012-2C.-2013-2D.-20132

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.

1)如图,点P是四边形ABCD内一点,且满足PAPBPCPD,∠APB=∠CPD,点EFGH分别为边ABBCCDDA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;

2)若改变(1)中的条件,使∠APB=∠CPD90°,其他条件不变,直接写出中点四边形EFGH的形状(不必证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】暑假到了,即将迎来手机市场的销售旺季.某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:

进价(元/部)

4000

2500

售价(元/部)

4300

3000

该商场计划投入15.5万元资金,全部用于购进两种手机若干部,期望全部销售后可获毛利润不低于2万元.(毛利润=(售价﹣进价)×销售量)

1)若商场要想尽可能多的购进甲种手机,应该安排怎样的进货方案购进甲乙两种手机?

2)通过市场调研,该商场决定在甲种手机购进最多的方案上,减少甲种手机的购进数量,增加乙种手机的购进数量.已知乙种手机增加的数量是甲种手机减少的数量的2倍,而且用于购进这两种手机的总资金不超过16万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知ABC为等腰直角三角形,∠ACB9,点A在直线DE上,过C点作CFDEF,过B点作BGDEG

1)发现问题:如图1,当BC两点均在直线DE上方时,线段AGBGCF存在的数量关系是   

2)类比探究:当ABC绕点A顺时针旋转至图2的位置时,线段AGBGCF之间的数量关系是否会发生变化?如果不变,请说明理由;如果变化,请写出你的猜想,并给予证明;

3)拓展延伸:当ABC绕点A顺时针旋转至图3的位置时,若CF1AG2,请直接写出ABC的面积.

查看答案和解析>>

同步练习册答案