【题目】对于一元二次方程,如果方程有两个实数根,,那么,(说明:定理成立的条件).例如方程中,,所以该方程有两个不等的实数解.设方程的两根为,,那么,,请根据上面阅读材料解答下列各题:
(1)已知方程的两根为、,求的值;
(2)已知,是一元二次方程的两个实数根,是否存在实数,使成立?若存在,求出的值;若不存在,请说明理由.
科目:初中数学 来源: 题型:
【题目】已知:如图,AB是⊙O的直径,BC是弦,∠B=30°,延长BA到D,使∠BDC=30°.
(1)求证:DC是⊙O的切线;
(2)若AB=2,求DC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在⊙O 的内接△ABC 中,∠ABC=30°,AC 的延长线与过点 B 的⊙O 的切线相交于点 D,若⊙O 的半径 OC=1,BD∥OC,则 CD 的长为( )
A. 1+ B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某单位宿舍用电规定如下:如果每户一个月的用电量不超过度,那么这个月只需要交10元电费,若超过度,则这个月除了要交10元电费外,超过的部分还要按元交费,下表是某户5月份和6月份的用电和交费情况,求的值.
月份 | 用电量(度) | 交电费总数(元) |
5 | 80 | 25 |
6 | 45 | 10 |
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在正方形中,对角线与相交于点,平分,交于点.
(1).求证:;
(2).点从点出发,沿着线段向点运动(不与点重合),同时点从点出发,沿着的延长线运动,点与的运动速度相同,当动点停止运动时,另一动点也随之停止运动.如图2,平分,交于点,过点作,垂足为,请猜想,与三者之间的数量关系,并证明你的猜想;
(3).在(2)的条件下,当,时,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换,如此这样,连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为( )
A.(-2012,2)B.(-2012,-2)C.(-2013,-2)D.(-2013,2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.
(1)如图,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;
(2)若改变(1)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状(不必证明).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】暑假到了,即将迎来手机市场的销售旺季.某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:
甲 | 乙 | |
进价(元/部) | 4000 | 2500 |
售价(元/部) | 4300 | 3000 |
该商场计划投入15.5万元资金,全部用于购进两种手机若干部,期望全部销售后可获毛利润不低于2万元.(毛利润=(售价﹣进价)×销售量)
(1)若商场要想尽可能多的购进甲种手机,应该安排怎样的进货方案购进甲乙两种手机?
(2)通过市场调研,该商场决定在甲种手机购进最多的方案上,减少甲种手机的购进数量,增加乙种手机的购进数量.已知乙种手机增加的数量是甲种手机减少的数量的2倍,而且用于购进这两种手机的总资金不超过16万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC为等腰直角三角形,∠ACB=90°,点A在直线DE上,过C点作CF⊥DE于F,过B点作BG⊥DE于G.
(1)发现问题:如图1,当B、C两点均在直线DE上方时,线段AG、BG和CF存在的数量关系是 .
(2)类比探究:当△ABC绕点A顺时针旋转至图2的位置时,线段AG、BG和CF之间的数量关系是否会发生变化?如果不变,请说明理由;如果变化,请写出你的猜想,并给予证明;
(3)拓展延伸:当△ABC绕点A顺时针旋转至图3的位置时,若CF=1,AG=2,请直接写出△ABC的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com