精英家教网 > 初中数学 > 题目详情
17.若xm÷xn=xm•xn,求7(2n-1)5的值.

分析 根据同底数幂的除法底数不变指数相减,同底数幂的乘法底数不变指数相加,可得关于m、n的方程,根据解方程,可得n的值,根据乘方的意义,可得答案.

解答 解:由题意,得
xm÷xn=xm•xn,得
m+n=m-n.
解得n=0.
7(2n-1)5=7×(-1)5=-7.

点评 本题考查了同底数幂的乘除法,利用同底数幂的乘除法得出关于m、n的方程是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.计算:
(1)$\sqrt{27}$-$\sqrt{12}$+$\sqrt{\frac{1}{3}}$;             
(2)($\sqrt{48}$-$\sqrt{75}$)×$\sqrt{1\frac{1}{3}}$;
(3)|-6|-$\sqrt{9}$-(-1)2;             
(4)$\frac{3}{\sqrt{3}}$-($\sqrt{3}$)2+(π+$\sqrt{3}$)0-$\sqrt{27}$+|$\sqrt{3}$-2|

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.如图,已知AB是⊙O的直径,C点在⊙O上,CD平分∠ACB,若AC=6,BC=8,则AD长为(  )
A.$\frac{4}{3}$B.5C.5$\sqrt{3}$D.5$\sqrt{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.已知代数式$\frac{a+π}{{\sqrt{2-a}}}$的值为正数,那么满足条件的所有整数a的标准差为$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.已知abc≠0,且a+b+c=0,求a($\frac{1}{b}$+$\frac{1}{c}$)+b($\frac{1}{c}$+$\frac{1}{a}$)+c($\frac{1}{a}$+$\frac{1}{b}$)的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,在△ABC中,∠C=90°,以点C为圆心,BC为半径的圆交AB于点D,交AC于点E.
(1)若∠A=25°,求$\widehat{BD}$的度数.
(2)若BC=9,AC=12,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,是小李设计用手电来测量某古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.1米,BP=1.9米,PD=19米,那么该古城墙CD的高度是11米.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图1,圆锥底面圆半径为1,母线长为4,图2为其侧面展开图.
(1)求阴影部分面积;
(2)母线SC是一条蜜糖线,一只蚂蚁从A沿着圆锥表面最少需要爬多远才能吃到蜜糖?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,在Rt△ABC中,∠C=90°,AC=16,BC=8,MN=AB,点M、N分别在AC和过点A且垂直于AC的射线AP上运动,问:点M运动到什么位置时,△ABC和以A、M、N为顶点的三角形全等(画出图形,写出解答过程).

查看答案和解析>>

同步练习册答案