精英家教网 > 初中数学 > 题目详情
2.如图,在△ABC中,∠C=90°,以点C为圆心,BC为半径的圆交AB于点D,交AC于点E.
(1)若∠A=25°,求$\widehat{BD}$的度数.
(2)若BC=9,AC=12,求BD的长.

分析 (1)求出∠B的度数,求出∠B所对的弧的度数,即可得出答案;
(2)根据勾股定理求出AB,根据割线定理得出比例式,即可得出答案.

解答 解:(1)延长BC交⊙O于N,
∵在△ABC中,∠C=90°,∠A=25°,
∴∠B=65°,
∴∠B所对的弧BDN的度数是130°,
∴$\widehat{BD}$的度数是180°-130°=50°;

(2)延长AC交⊙O于M,
在Rt△BCA中,由勾股定理得:AB=$\sqrt{A{C}^{2}+B{C}^{2}}$=$\sqrt{1{2}^{2}+{9}^{2}}$=15,
∵BC=9,AC=12,
∴CM=CE=BC=9,AM=AC+CM=21,AE=AC-CE=3,
由割线定理得:AD×AB=AE×AM,
∴(15-BD)×15=21×3,
解得:BD=$\frac{54}{5}$.

点评 本题考查了勾股定理,割线定理圆心角、弧、弦之间的关系的应用,能综合运用知识点进行计算是解此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.如图,△ABC中,∠C=90°,AD平分∠BAC,ED⊥BC,DF∥AB,求证:AD与EF互相垂直平分.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.阅读下列材料,然后解答下列问题:在进行代数式化简时,我们有时会碰上如$\frac{5}{\sqrt{3}}$,$\frac{2}{\sqrt{3}+1}$这样的式子,其实我们还可以将其进一步化简:
(一)$\frac{5}{\sqrt{3}}$=$\frac{5×\sqrt{3}}{\sqrt{3}×\sqrt{3}}$=$\frac{5}{3}$$\sqrt{3}$;
(二)$\frac{2}{\sqrt{3}+1}$=$\frac{2×(\sqrt{3}-1)}{(\sqrt{3}+1)(\sqrt{3}-1)}$=$\frac{2(\sqrt{3}-1)}{(\sqrt{3})^{2}-1}$=$\sqrt{3}$-1;
(三)$\frac{2}{\sqrt{3}+1}$=$\frac{3-1}{\sqrt{3}+1}$=$\frac{(\sqrt{3})^{2}-{1}^{2}}{\sqrt{3}+1}$=$\frac{(\sqrt{3}+1)(\sqrt{3}-1)}{\sqrt{3}+1}$=$\sqrt{3}$-1.以上这种化简的方法叫分母有理化.
(1)请用不同的方法化简$\frac{2}{\sqrt{5}+\sqrt{3}}$:
①参照(二)式化简$\frac{2}{\sqrt{5}+\sqrt{3}}$=$\sqrt{5}$-$\sqrt{3}$.
②参照(三)式化简$\frac{2}{\sqrt{5}+\sqrt{3}}$=$\sqrt{5}$-$\sqrt{3}$.
(2)化简:$\frac{1}{\sqrt{3}+1}$+$\frac{1}{\sqrt{5}+\sqrt{3}}$+$\frac{1}{\sqrt{7}+\sqrt{5}}$+…+$\frac{1}{\sqrt{99}+\sqrt{97}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.当x=$\sqrt{2}$时,代数式$\frac{{x}^{2}-2x+1}{{x}^{2}-1}$÷(1-$\frac{3}{x+1}$)的值等于-$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.若xm÷xn=xm•xn,求7(2n-1)5的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.(1)解方程组:$\left\{\begin{array}{l}{3x-y=-7}\\{y+4z=3}\\{2x-2z=-5}\end{array}\right.$
(2)解不等式,并把解在数轴上表示出来
x-$\frac{1}{2}$[x-$\frac{1}{2}$(x-1)]<$\frac{2}{3}$(x-1).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.(1)$\frac{1}{4}$m-$\frac{1}{2}$n+2(-m+3n);             
(2)x3•(-x)5•(x23
(3)(-2x32-(3x33-(2x)2(2x4);      
(4)(-$\frac{1}{2}$xy22(3xy-4xy2+1); 
(5)(-3)5×(-$\frac{2}{3}$)5×56;                 
(6)(-$\frac{1}{2}$×1032(4×1023
(7)若A=2x2-3x-1,B=-$\frac{1}{2}$x+4x2-3,C=x(-2x-1),当x=-2时,求A-2B+C的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.若把一个多项式的各项按照某个字母的指数从大到小排列,叫做这一字母的降幂排列.
已知多项式y4-x4+3x3y-$\frac{1}{2}$xy2-5x2y3
(1)按字母x的降幂排列;
(2)按字母y的降幂排列.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,AD是△ABC的BC边上的高,AE平分∠BAC,若∠B=75°,∠C=45°,求∠DAE的度数.

查看答案和解析>>

同步练习册答案