【题目】一牧童在 A 处牧马,牧童的家在 B 处,A,B 处距河岸的距离分别是 AC=500 m,BD=700 m,且 C,D 两地间的距离也为 500 m,天黑前牧童从点 A 将马牵到河边 去饮水,再赶回家,为了使所走的路程最短.
(1)牧童应将马赶到河边的什么地点?请你在图中画出来.
(2)问:他至少要走多少路?
【答案】(1)见解析;(2)1300m.
【解析】
(1)将此题转化为轴对称问题,作出A点关于河岸的对称点A′,根据两点之间线段最短得出BA′的长即为牧童要走的最短路程;
(2)根据(1)中所化图象,利用勾股定理解答即可.
解:(1)如图①,作点 A 关于河岸的对称点 A′,连结 BA′交河岸于点 P,此时
PB+PA=PB+PA′=BA′,所走的路程最短,故牧童应将马赶到河边的点 P 处.
(2)如图②,过点 A′作 A′B′⊥BD 交 BD 的延长线于点B′.
易知四边形 A′B′DC 是长方形,
∴B′A′=CD=500,B′D=A′C=AC=500.
在 Rt△BB′A′中,BB′=BD+DB′=1200,A′B′=500,
∴BA′= =1300(m).
答:他至少要走 1300 m.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为 ,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为( )
A.(3,2)
B.(3,1)
C.(2,2)
D.(4,2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,将一圆形纸片向右、向上两次对折后得到如图2所示的扇形AOB.已知OA=6,取OA的中点C,过点C作CD⊥OA交 于点D,点F是 上一点.若将扇形BOD沿OD翻折,点B恰好与点F重合,用剪刀沿着线段BD,DF,FA依次剪下,则剪下的纸片(形状同阴影图形)面积之和为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数y= (x>0)的图象经过AO的中点C,且与AB相交于 点D,OB=4,AD=3
(1)求反比例函数y= 的解析式;
(2)若直线y=﹣x+m与反比例函数y= (x>0)的图象相交于两个不同点E、F(点E在点F的左边),与y轴相交于点M ①则m的取值范围为(请直接写出结果)
②求MEMF的值 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在直线 l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别 为 a,b,c,正放置的四个正方形的面积依次为 S1,S2,S3,S4,则 S1+S2+S3+S4=( )
A. a+b B. b+c C. a+c D. a+b+c
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.
(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;
(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△ACN为等腰直角三角形;
(3)将图1中△BCE绕点B旋转到图3位置,此时A,B,M三点在同一直线上.(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=kx+b,且x=65时,y=55;x=75时,y=45.
(1)求一次函数y=kx+b的表达式;
(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∵DE∥BC(已知),∴∠1=____(____),∠2=_______(_____)又∵∠1=∠2(已知),∴∠B=∠C(____),∵∠3=∠B(已知),∴∠3=∠C(_________),∴DF∥AC(______)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com