精英家教网 > 初中数学 > 题目详情

【题目】如图1,将一圆形纸片向右、向上两次对折后得到如图2所示的扇形AOB.已知OA=6,取OA的中点C,过点C作CD⊥OA交 于点D,点F是 上一点.若将扇形BOD沿OD翻折,点B恰好与点F重合,用剪刀沿着线段BD,DF,FA依次剪下,则剪下的纸片(形状同阴影图形)面积之和为

【答案】36π﹣108
【解析】解:如图,∵CD⊥OA, ∴∠DCO=∠AOB=90°,
∵OA=OD=OB=6,OC= OA= OD,
∴∠ODC=∠BOD=30°,
作DE⊥OB于点E,

则DE= OD=3,
∴S弓形BD=S扇形BOD﹣SBOD= ×6×3=3π﹣9,
则剪下的纸片面积之和为12×(3π﹣9)=36π﹣108,
所以答案是:36π﹣108.
【考点精析】本题主要考查了扇形面积计算公式的相关知识点,需要掌握在圆上,由两条半径和一段弧围成的图形叫做扇形;扇形面积S=π(R2-r2)才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=x2+x﹣6与x轴两个交点分别是A、B(点A在点B的左侧).
(1)求A、B的坐标;
(2)利用函数图象,写出y<0时,x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在平面直角坐标系中,过点A(﹣ ,0)的两条直线分别交y轴于B、C两点,且B、C两点的纵坐标分别是一元二次方程x2﹣2x﹣3=0的两个根

(1)求线段BC的长度;
(2)试问:直线AC与直线AB是否垂直?请说明理由;
(3)若点D在直线AC上,且DB=DC,求直线BD的解析式;
(4)在x轴上是否存在P,使以O、B、P三点为顶点的三角形与△ABC相似?若存在,请直接写出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方形OABC的OA边在x轴的正半轴上,OC在y轴的正半轴上,抛物线y=ax2+bx经过点B(1,4)和点E(3,0)两点.

(1)求抛物线的解析式;
(2)若点D在线段OC上,且BD⊥DE,BD=DE,求D点的坐标;
(3)在条件(2)下,在抛物线的对称轴上找一点M,使得△BDM的周长为最小,并求△BDM周长的最小值及此时点M的坐标;
(4)在条件(2)下,从B点到E点这段抛物线的图象上,是否存在一个点P,使得△PAD的面积最大?若存在,请求出△PAD面积的最大值及此时P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】AB是⊙O的直径,∠DAB=22.5°,延长AB到点C,使得∠ACD=45°.
(1)求证:CD是⊙O的切线;
(2)若AB=2 ,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】
(1)如图1,△ABC为等边三角形,现将三角板中的60°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=30°,连接AF,EF.

①求∠EAF的度数;
②DE与EF相等吗?请说明理由;
(2)如图2,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=45°,连接AF,EF,请直接写出探究结果:
①求∠EAF的度数;
②线段AE,ED,DB之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义函数f(x),当x≤3时,f(x)=x2﹣2x,当x>3时,f(x)=x2﹣10x+24,若方程f(x)=2x+m有且只有两个实数解,则m的取值范围为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一牧童在 A 处牧马,牧童的家在 B 处,A,B 处距河岸的距离分别是 AC=500 m,BD=700 m, C,D 两地间的距离也为 500 m,天黑前牧童从点 A 将马牵到河边 去饮水,再赶回家,为了使所走的路程最短.

(1)牧童应将马赶到河边的什么地点?请你在图中画出来.

(2)问:他至少要走多少路?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:

港口

运费(元/台)

甲库

乙库

A港

14

20

B港

10

8


(1)设从甲仓库运送到A港口的物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x的取值范围;
(2)求出最低费用,并说明费用最低时的调配方案.

查看答案和解析>>

同步练习册答案