【题目】定义函数f(x),当x≤3时,f(x)=x2﹣2x,当x>3时,f(x)=x2﹣10x+24,若方程f(x)=2x+m有且只有两个实数解,则m的取值范围为 .
【答案】m>﹣3或﹣12<m<﹣4
【解析】解:∵x≤3时,f(x)=x2﹣2x=(x﹣1)2﹣1, ∴该抛物线的顶点坐标为(1,﹣1),
当f(x)=0时,由x2﹣2x=0得x=0或x=2,
∴抛物线与x轴的交点为(0,0)和(2,0),
∵x>3时,f(x)=x2﹣10x+24=(x﹣5)2﹣1,
∴此时抛物线的顶点坐标为(5,﹣1),
当f(x)=0时,由x2﹣10x+24=0得x=4或x=6,
∴此时抛物线与x轴的交点为(4,0)和(6,0),
由 可得 ,即两抛物线交点坐标为(3,3),
如图所示:
直线f(x)=2x+m可看作直线y=2x平移得到,
①当直线f(x)=2x+m过点(3,3),即6+m=3,得m=﹣3时,
直线f(x)=2x+m与f(x)=x2﹣2x的图象有两个交点;
②当直线f(x)=2x+m与f(x)=x2﹣2x有一个交点,即x2﹣2x=2x+m只有一个解时,方程f(x)=2x+m有且只有两个解,
解得:m=﹣4,
当直线f(x)=2x+m与f(x)=x2﹣10x+24只有1个交点时,即2x+m=x2﹣10x+24只有一个解,
解得:m=﹣12,
由图象可知当m>﹣3或﹣12<m<﹣4时,方程f(x)=2x+m有且只有两个实数解,
所以答案是:m>﹣3或﹣12<m<﹣4.
【考点精析】利用抛物线与坐标轴的交点对题目进行判断即可得到答案,需要熟知一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.
科目:初中数学 来源: 题型:
【题目】某新建火车站站前广场需要绿化的面积为46000米2 , 施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.
(1)该项绿化工程原计划每天完成多少米2?
(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56m2 , 两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,边长为1的正方形ABCD的对角线AC、BD相交于点O,有直角∠MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G,则下列结论中正确的是 .
(1)EF= OE;(2)S四边形OEBF:S正方形ABCD=1:4;(3)BE+BF= OA;(4)在旋转过程中,当△BEF与△COF的面积之和最大时,AE= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,将一圆形纸片向右、向上两次对折后得到如图2所示的扇形AOB.已知OA=6,取OA的中点C,过点C作CD⊥OA交 于点D,点F是 上一点.若将扇形BOD沿OD翻折,点B恰好与点F重合,用剪刀沿着线段BD,DF,FA依次剪下,则剪下的纸片(形状同阴影图形)面积之和为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算:(1) (2)
(3) (4)(3x+y)(-y+3x)
(5)2a(a-2a3)-(-3a2)2; (6)(x-3)(x+2)-(x+1)2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数y= (x>0)的图象经过AO的中点C,且与AB相交于 点D,OB=4,AD=3
(1)求反比例函数y= 的解析式;
(2)若直线y=﹣x+m与反比例函数y= (x>0)的图象相交于两个不同点E、F(点E在点F的左边),与y轴相交于点M ①则m的取值范围为(请直接写出结果)
②求MEMF的值 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在直线 l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别 为 a,b,c,正放置的四个正方形的面积依次为 S1,S2,S3,S4,则 S1+S2+S3+S4=( )
A. a+b B. b+c C. a+c D. a+b+c
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=kx+b,且x=65时,y=55;x=75时,y=45.
(1)求一次函数y=kx+b的表达式;
(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】新农村社区改造中,有一部分楼盘要对外销售,某楼盘共23层,销售价格如下:第八层楼房售价为4000元/米2 , 从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套楼房面积均为120米2 .
若购买者一次性付清所有房款,开发商有两种优惠方案:
方案一:降价8%,另外每套楼房赠送a元装修基金;
方案二:降价10%,没有其他赠送.
(1)请写出售价y(元/米2)与楼层x(1≤x≤23,x取整数)之间的函数关系式;
(2)老王要购买第十六层的一套楼房,若他一次性付清购房款,请帮他计算哪种优惠方案更加合算.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com