【题目】在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示的正整数后,背面向上,洗匀放好.
(1)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,嘉嘉从中随机抽取一张,求抽到的卡片上的数是勾股数的概率P1;
(2)琪琪从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张(卡片用A,B,C,D表示).请用列表或画树形图的方法求抽到的两张卡片上的数都是勾股数的概率P2,并指出她与嘉嘉抽到勾股数的可能性一样吗?
【答案】(1);(2)淇淇与嘉嘉抽到勾股数的可能性不一样.
【解析】试题分析:
(1)根据等可能事件的概率的定义,分别确定总的可能性和是勾股数的情况的个数;
(2)用列表法列举出所有的情况和两张卡片上的数都是勾股数的情况即可.
试题解析:
(1)嘉嘉随机抽取一张卡片共出现4种等可能结果,其中抽到的卡片上的数是勾股数的结果有3种,所以嘉嘉抽取一张卡片上的数是勾股数的概率P1=;
(2)列表法:
A | B | C | D | |
A | (A,B) | (A,C) | (A,D) | |
B | (B,A) | (B,C) | (B,D) | |
C | (C,A) | (C,B) | (C,D) | |
D | (D,A) | (D,B) | (D,C) |
由列表可知,两次抽取卡片的所有可能出现的结果有12种,其中抽到的两张卡片上的数都是勾股数的有6种,
∴P2=,
∵P1=,P2=,P1≠P2
∴淇淇与嘉嘉抽到勾股数的可能性不一样.
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AB=10,AC=8,D是AB的中点,M是边AC上一点,连接DM,以DM为直角边作等腰直角三角形DME,斜边DE交线段CM于点F,若S△MDF=2S△MEF,则CM的长为_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD纸片中,已知∠A=160°,∠B=30°,∠C=60°,四边形ABCD纸片分别沿EF,GH,OP,MN折叠,使A与A′、B与B′、C与C′、D与D′重合,则∠1+∠2+∠3+∠4+∠5+∠6+∠7﹣∠8的值是( )
A. 600° B. 700° C. 720° D. 800°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD纸片中,已知∠A=160°,∠B=30°,∠C=60°,四边形ABCD纸片分别沿EF,GH,OP,MN折叠,使A与A′、B与B′、C与C′、D与D′重合,则∠1+∠2+∠3+∠4+∠5+∠6+∠7﹣∠8的值是( )
A. 600° B. 700° C. 720° D. 800°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,劣弧,BD∥CE,连接AE并延长交BD于D.
(1)求证:BD是⊙O的切线;
(2)若⊙O的半径为2cm,AC=3cm,求BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在△ABC,△ADE中,∠BAC=∠DAE=90o,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE=AC+AD,其中结论正确的是___________(填序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】由物理学知识知道,在力F的作用下,物体会在力F的方向上发生位移s,力所做的功W=Fs.当W为定值时,F与s之间的函数关系图象如图所示.
(1)力F所做的功是多少?
(2)试确定F、s之间的函数解析式;
(3)当F=4N时,s是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,BE⊥AC于点E,BC的垂直平分线分别交AB、BE于点D、G,垂足为H,CD⊥AB,CD交BE于点F
(1)求证:△BDF≌△CDA,并写出BF与AC的数量关系.
(2)若DF=DG,求证:①BE平分∠ABC; ②CE=BF.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com