精英家教网 > 初中数学 > 题目详情

【题目】如图,已知在ABCADE中,∠BAC=DAE=90oAB=ACAD=AE,点CDE三点在同一条直线上,连接BDBE.以下四个结论:①BD=CE;②BDCE;③∠ACE+DBC=45°;④BE=AC+AD,其中结论正确的是___________(填序号)

【答案】①②③

【解析】

根据全等、等腰三角形以及三角形边的性质即可得出答案.

∵∠BAC=DAE=90oAB=ACAD=AE

又∠BAD=BAC+CAD

CAE=EAD+CAD

∴∠BAD=CAE

∴△BAD≌△CAE(SAS)

BD=CE,故选项①正确;

∴∠BDA=CEA=45°

又∠ADE=45°

∴∠BDE=ADE+BDA=90°

BDCE,故选项②正确;

∵△BAD≌△CAE

∴∠ACE=ABD

又∠ABC=ABD+CBD=ACE+CBD=45°,故选项③正确;

在△BAE

AB+AE>BE

AB=ACAE=AD

AC+AD>BE,故选项④错误;

故答案为:①②③.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在Rt△ABC中,∠B=90°,AB=3cm,BC=4cm.

(1)如图1,点P从点A出发,沿AB匀速运动;点Q从点C出发,沿CB匀速运动.两点同时出发,在B点处首次相遇.设点P的速度为xcm/s. 表示点Q的速度是多少cm/s(用含的代数式表示);

(2)在(1)的条件下,两点在B点处首次相遇后,点P的运动速度每秒提高了2 cm,并沿B→C→A的路径匀速运动;点Q保持原速度不变,沿B→A→C的路径匀速运动,如图2.两点在AC边上点D处再次相遇后停止运动.又知AD=1cm.求点P原来的速度x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1如图1,已知:在ABC中,BAC90°AB=AC,直线m经过点ABD直线m, CE直线m,垂足分别为点DE.证明:DE=BD+CE.

2 如图2,将1中的条件改为:在ABC中,AB=ACDAE三点都在直线m,并且有BDA=AEC=BAC=,其中为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.

3拓展与应用:如图3DEDAE三点所在直线m上的两动点(DAE三点互不重合),FBAC平分线上的一点,ABFACF均为等边三角形,连接BDCE,BDA=AEC=BAC,试判断DEF的形状.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示的正整数后,背面向上,洗匀放好.

(1)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,嘉嘉从中随机抽取一张,求抽到的卡片上的数是勾股数的概率P1

(2)琪琪从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张(卡片用A,B,C,D表示).请用列表或画树形图的方法求抽到的两张卡片上的数都是勾股数的概率P2,并指出她与嘉嘉抽到勾股数的可能性一样吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在锐角三角形ABC直线lBC的中垂线射线m为∠ABC的角平分线直线lm相交于点P.若∠BAC=60°,ACP=24°,则∠ABP的度数是( )

A. 24° B. 30° C. 32° D. 36°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,DBC的中点,过D点的直线EGAB于点E,交AB的平行线CG于点G,DFEG,交AC于点F.

(1)求证:BE=CG;

(2)判断BE+CFEF的大小关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(2016山东省济宁市)如图,O为坐标原点,四边形OACB是菱形,OBx轴的正半轴上,sinAOB=,反比例函数在第一象限内的图象经过点A,与BC交于点F,则AOF的面积等于(  )

A. 60B. 80C. 30D. 40

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】建立模型:

如图1,已知ABC,AC=BC,C=90°,顶点C在直线l上.

操作:

过点A作ADl于点D,过点B作BEl于点E.求证:CAD≌△BCE

模型应用:

(1)如图2,在直角坐标系中,直线l1:y=x+4与y轴交于点A,与x轴交于点B,将直线l1绕着点A顺时针旋转45°得到l2.求l2的函数表达式.

(2)如图3,在直角坐标系中,点B(8,6),作BAy轴于点A,作BCx轴于点C,P是线段BC上的一个动点,点Q(a,2a﹣6)位于第一象限内.问点A、P、Q能否构成以点Q为直角顶点的等腰直角三角形,若能,请求出此时a的值,若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABDC中,,点OBD的中点,且OA平分

1)求证:OC平分

2)求证:

3)求证:AB+CD=AC

查看答案和解析>>

同步练习册答案