【题目】如图,AB是⊙O的直径,点C是圆周上一点,连接AC、BC,以点C为端点作射线CD、CP分别交线段AB所在直线于点D、P,使∠1=∠2=∠A.
(1)求证:直线PC是⊙O的切线;
(2)若CD=4,BD=2,求线段BP的长.
【答案】(1)详见解析;(2)
【解析】
(1)连接OC,由AB是⊙O的直径证得∠ACO+∠BCO=90°,由OA=OC证得∠2=∠A=∠ACO,由此得到∠PCO=90°,即证得直线PC是⊙O的切线;
(2)利用∠1=∠A证得∠CDB=90°,得到CD2=ADBD,求出AD,由此求得AB=10,OB=5;在由∠OCP=90°推出OC2=ODOP,求出OP=,由此求得线段BP的长.
(1)连接OC,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠ACO+∠BCO=90°,
∵OA=OC,
∴∠A=∠ACO,
∵∠A=∠1=∠2,
∴∠2=∠ACO,
∴∠2+∠BCO=90°,
∴∠PCO=90°,
∴OC⊥PC,
∴直线PC是⊙O的切线;
(2)∵∠ACB=90°,
∴∠A+∠ABC=90°
∴∠1=∠A,
∴∠1+∠ABC=90°,
∴∠CDB=90°,
∴CD2=ADBD,
∵CD=4,BD=2,
∴AD=8,
∴AB=10,
∴OC=OB=5,
∵∠OCP=90°,CD⊥OP,
∴OC2=ODOP,
∴52=(5﹣2)×OP,
∴OP=,
∴PB=OP﹣OB=.
科目:初中数学 来源: 题型:
【题目】(问题提出)
(1)如图①,在等腰中,斜边,点为上一点,连接,则的最小值为 .
(问题探究)
(2)如图2,在中,,,点是上一点,且,点是边上一动点,连接,将沿翻折得到,点与点对应,连接,求的最小值.
(问题解决)
(3)如图③,四边形是规划中的休闲广场示意图,其中,,,,点是上一点,.现计划在四边形内选取一点,把建成商业活动区,其余部分建成景观绿化区.为方便进入商业区,需修建小路、,从实用和美观的角度,要求满足,且景观绿化区面积足够大,即区域面积尽可能小.则在四边形内是否存在这样的点?若存在,请求出面积的最小值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知为的直径,,点和点是上关于直线对称的两个点,连接、,且,直线和直线相交于点,过点作直线与线段的延长线相交于点,与直线相交于点,且.
(1)求证:直线为的切线;
(2)若点为线段上一点,连接,满足,
①求证:;
②求的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,直线ABy=kx﹣1分别交x轴、y轴于点A、B,直线CDy=x+2分别交x轴、y轴于点D、C,且直线AB、CD交于点E,E的横坐标为﹣6.
(1)如图①,求直线AB的解析式;
(2)如图②,点P为直线BA第一象限上一点,过P作y轴的平行线交直线CD于G,交x轴于F,在线段PG取点N,在线段AF上取点Q,使GN=QF,在DG上取点M,连接MN、QN,若∠GMN=∠QNF,求的值;
(3)在(2)的条件下,点E关于x轴对称点为T,连接MP、TQ,若MP∥TQ,且GN:NP=4:3,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线y1=﹣x+2和抛物线相交于点A,B.
(1)当k=时,求两函数图象的交点坐标;
(2)二次函数y2的顶点为P,PA或PB与直线y1=﹣x+2垂直时,求k的值.
(3)当﹣4<x<2时,y1>y2,试直接写出k的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:
(1)九(1)班的学生人数为 ,并把条形统计图补充完整;
(2)扇形统计图中m= ,n= ,表示“足球”的扇形的圆心角是 度;
(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】AB是⊙O的直径,C点在⊙O上,F是AC的中点,OF的延长线交⊙O于点D,点E在AB的延长线上,∠A=∠BCE.
(1)求证:CE是⊙O的切线;
(2)若BC=BE,判定四边形OBCD的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线过点,,与轴交于点.点是轴下方的抛物线上一动点(包含点,).作直线,若过点作轴的垂线,交直线于点.
(1)求抛物线的解析式;
(2)在点运动的过程中,请求出面积的最大值及此时点的坐标;
(3)在点运动的过程中,是否存在点,使是等腰三角形.若存在,请直接写出点的横坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图AM∥BN,C是BN上一点, BD平分∠ABN且过AC的中点O,交AM于点D,DE⊥BD,交BN于点E.
(1)求证:△ADO≌△CBO.
(2)求证:四边形ABCD是菱形.
(3)若DE = AB = 2,求菱形ABCD的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com