精英家教网 > 初中数学 > 题目详情
已知,如图,△ABC中,∠ABC=66°,∠ACB=54°,BE、CF是两边AC、AB上的高,它们交于点H.求∠ABE和∠BHC的度数.
分析:先根据三角形的内角和定理求出∠A的度数,再由BE⊥AC可知∠AEB=90°,由直角三角形的性质即可求出∠ABE的度数;同理可得出∠BHF的度数,由两角互补的性质即可求出∠BHC的度数.
解答:解:∵△ABC中,∠ABC=66°,∠ACB=54°,
∴∠A=180°-∠ABC-∠ACB=180°-66°-54°=60°,
∵BE⊥AC,
∴∠AEB=90°,
∴∠ABE=90°-∠A=90°-60°=30°;
同理,∵CF⊥AB,
∴∠BFC=90°,
∴∠BHF=90°-∠ABE=90°-30°=60°,
∴∠BHC=180°-∠BHF=180°-60°=120°.
点评:本题考查的是三角形内角和定理及直角三角形的性质,熟知三角形的内角和是180°是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、已知,如图,△ABC中,∠BAC=90°,AD⊥BC于点D,BE平分∠ABC,交AD于点M,AN平分∠DAC,交BC于点N.
求证:四边形AMNE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,∠ABC、∠ACB 的平分线相交于点F,过F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC是等边三角形,点D在AB上,点E在AC的延长线上,且BD=CE,DE交BC于F,求证:BF=CF+CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AB=AC=10,BC=16,点D在BC上,DA⊥CA于A.
求:BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AD⊥BC,BD=DE,点E在AC的垂直平分线上.
(1)请问:AB、BD、DC有何数量关系?并说明理由.
(2)如果∠B=60°,请问BD和DC有何数量关系?并说明理由.

查看答案和解析>>

同步练习册答案