【题目】若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形,例如△ABC中,三边分别为a、b、c,若满足b2=ac,则称△ABC为比例三角形,其中b为比例中项.
(1)已知△ABC是比例三角形,AB=2,BC=3,请直接写出所有满足条件的AC的长;
(2)如图,在四边形ABCD中,AD∥BC,对角线BD平分∠ABC,∠BAC=∠ADC.
①请直接写出图中的比例三角形;
②作AH⊥BD,当∠ADC=90°时,求的值;
(3)三边长分别为a、b、c的三角形是比例三角形,且b为比例中项,已知抛物线y=ax2+bx+c与y轴交于点B,顶点为A,O为坐标原点,以OB为直径的⊙M经过点A,记△OAB的面积为S1,⊙M的面积为S2,试问S1:S2的值是否为定值?若是请求出定值,若不是请求出S1:S2的取值范围.
【答案】(1)AC=;
(2)①△ADC是比例三角形;②;
(3)=.
【解析】
(1)分三种情况讨论,由比例三角形的定义可求解;
(2)①通过证明△ABC∽△DCA,可得,可得AD2=ACCD,可得△ADC是比例三角形;
②由勾股定理可得AB2+AC2=BC2,AD2+CD2=AC2,BC2+CD2=BD2,可得BD=AC,即可求解;
(3)分别求出S1,S2,由勾股定理可求b的值,即可求解.
解:(1)∵△ABC是比例三角形,AB=2,BC=3,
∴若AB是比例中项,则AB2=BC×AC,
∴AC=,
若AC是比例中项,则AC2=BC×AB,
∴AC=,
若BC是比例中项,则BC2=AC×AB,
∴AC=
(2)①△ADC是比例三角形,
理由如下,
∵BD平分∠ABC,
∴∠ABD=∠CBD,
∵AD∥BC,
∴∠ACB=∠DAC,∠ADB=∠DBC,
∴∠ABD=∠ADB,
∴AB=AD,
∵∠DAC=∠ACB,∠BAC=∠ADC,
∴△ABC∽△DCA,
∴,且AD=AB,
∴AD2=ACCD,
∴△ADC是比例三角形;
②∵∠ADC=90°=∠BAC,AD∥BC,
∴∠ADC=∠BCD=90°,
∵AB2+AC2=BC2,AD2+CD2=AC2,BC2+CD2=BD2,
∴2AC2=BD2,
∴BD=AC,
∵AB=AD,AH⊥BD,
∴BH=BD=AC,
∴
(3)∵三边长分别为a、b、c的三角形是比例三角形,且b为比例中项,
∴b2=ac,a>0,b>0,c>0,
∵已知抛物线y=ax2+bx+c与y轴交于点B,顶点为A,
∴B(0,c),点A(﹣,)
∴点A(﹣,c)
∵S1=×c×=,
S2=π×(c)2=,
∴====,
∵以OB为直径的⊙M经过点A,
∴∠OAB=90°,
∴OA2+OB2=OC2,
∴()2+(c)2+()2+(c﹣c)2=c2,
∴a2c2=b2,
∴(b2﹣1)b2=0,
∴b=,
∴=
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,点D在AB的延长线上,C、E是⊙O上的两点,CE=CB,∠BCD=∠CAE,延长AE交BC的延长线于点F.
求证:(1)CD是⊙O的切线;
(2)CE=CF;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了预防疾病,某单位对办公室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成为正比例,药物燃烧后,y与x成反比例(如图),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量6毫克,请根据题中所提供的信息,解答下列问题:
(1)药物燃烧时,y关于x的函数关系式为________,自变量x的取值范为________;药物燃烧后,y关于x的函数关系式为________.
(2)研究表明,当空气中每立方米的含药量低于1.6毫克时员工方可进办公室,那么从消毒开始,至少需要经过________分钟后,员工才能回到办公室;
(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市对今年“元旦”期间销售A、B、C三种品牌的绿色鸡蛋情况进行了统计,并绘制如图所示的扇形统计图和条形统计图.根据图中信息解答下列问题:
(1)该超市“元旦”期间共销售 个绿色鸡蛋,A品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是 度;
(2)补全条形统计图;
(3)如果该超市的另一分店在“元旦”期间共销售这三种品牌的绿色鸡蛋1500个,请你估计这个分店销售的B种品牌的绿色鸡蛋的个数?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】湖南广益实验即将开展校园文化艺术节活动,为了合理编排节目,对学生最喜爱的歌曲、舞蹈、小品、相声四类节目进行了一次随机抽样调查(每名学生必须选择且只能选择一类),并将调查结果绘制成如下不完整统计图.
请你根据图中信息,回答下列问题:
(1)本次共调查了__________名学生;
(2)根据以上统计分析,估计该校2000名学生中最喜爱小品的人数为__________人;
(3)九年一班和九年二班各有2名学生擅长舞蹈,学校准备从这4名学生中随机抽取2名学生参加舞蹈节目的编排,那么抽取的2名学生恰好来自同一个班级的概率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数y=mx+n(m≠0)的图象与y轴交于点C,与反比例函数y=(k≠0)的图象交于A,B两点,点A在第一象限,纵坐标为4,点B在第三象限,BM⊥x轴,垂足为点M,BM=OM=2.
(1)求反比例函数和一次函数的解析式.
(2)连接OB,MC,求四边形MBOC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率为.
(1)求口袋中黄球的个数;
(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,
求两次摸 出都是红球的概率;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在矩形中,,点从点出发向点移动,速度为每秒1个单位长度,点从点出发向点移动,速度为每秒2个单位长度. 两点同时出发,且其中的任何一点到达终点后,另一点的移动同时停止.
(1)若两点的运动时间为,当为何值时,?
(2)在(1)的情况下,猜想与的位置关系并证明你的结论.
(3)①如图2,当时,其他条件不变,若(2)中的结论仍成立,则_________.
②当,时,其他条件不变,若(2)中的结论仍成立,则_________(用含的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在2014年巴西世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套,设销售单价为x(x60)元,销售量为y套.
(1)求出y与x的函数关系式;
(2)当销售单价为多少元时,且销售额为14000元?
(3)当销售单价为多少元时,才能在一个月内获得最大利润,最大利润是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com