【题目】为了预防疾病,某单位对办公室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成为正比例,药物燃烧后,y与x成反比例(如图),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量6毫克,请根据题中所提供的信息,解答下列问题:
(1)药物燃烧时,y关于x的函数关系式为________,自变量x的取值范为________;药物燃烧后,y关于x的函数关系式为________.
(2)研究表明,当空气中每立方米的含药量低于1.6毫克时员工方可进办公室,那么从消毒开始,至少需要经过________分钟后,员工才能回到办公室;
(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?
【答案】(1)y=x;(0≤x≤8);y=(x>8);(2)30;(3)有效,理由见解析.
【解析】
(1)当0≤x≤8时,药物燃烧时y与x之间是正比例函数关系,根据(8,6)利用待定系数法即可求出y与x之间的函数关系式;当x>8时,药物燃烧后y与x的函数关系是反比例函数关系,根据(8,6)利用待定系数法即可求出y与x之间的函数关系式;
(2)将y=1.6代入反比例函数关系式,就可求出对应的自变量的值,结合图像得出答案;
(3)把y=3代入正比例函数解析式和反比例函数解析式,求出相应的x,两数之差与10进行比较,大于等于10就有效.
(1) 当0≤x≤8时,设y=kx,把(8,6)代入得
6=8k,
∴k=
∴y= x(0≤x≤8);
当x>8时,设y=,把(8,6)代入得
设6=,
∴m=48,
∴y= (x>8)
(2)当y=1.6时,
=1.6,
解之得
x=30,
结合图像知,至少需要经过30分钟后,员工才能回到办公室;
(3)把y=3代入y= x,得:x=4
把y=3代入y= ,得:x=16
∵16﹣4=12
所以这次消毒是有效的
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线经过点,且与轴的一个交点为.
(1)求抛物线的表达式;
(2)是抛物线与轴的另一个交点,点的坐标为,其中,△的面积为.
①求的值;
②将抛物线向上平移个单位,得到抛物线.若当时,抛物线与轴只有一个公共点,结合函数的图象,求的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在□ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上(E不与A、B重合),连接EF、CF,则下列结论中一定成立的是 ( )
①∠DCF=∠BCD;②EF=CF;③;④∠DFE=4∠AEF.
A. ①②③④ B. ①②③ C. ①② D. ①②④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将A,B两点向右平移1个单位,再向上平移2个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD.
(1)求点C,D的坐标;
(2)若点P在直线BD上运动,连接PC,PO.
①若点P在线段BD上(不与B,D重合)时,求S△CDP+S△BOP的取值范围;
②若点P在直线BD上运动,试探索∠CPO,∠DCP,∠BOP的关系,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=4cm,AD=5cm,点E在AD上,且AE=3cm,点P、Q同时从点B出发,点P沿BE→ED→DC运动到点C停止,点Q沿BC运动到点C停止,它们的运动速度都是1cm/s,设P、Q出发t秒,△BPQ的面积为y cm2.则y与t的函数关系图象大致是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校八年级共有800名学生,准备调查他们对“低碳”知识的了解程度.
(1)在确定调查方式时,团委设计了以下三种方案:
方案一:调查八年级部分女生;
方案二:调查八年级部分男生;
方案三:到八年级每个班去随机调查一定数量的学生.
请问其中最具有代表性的一个方案是_____;
(2)团委采用了最具有代表性的调查方案,并用收集到的数据绘制出两幅不完整的统计图(如图①、图②所示),请你根据图中信息,将两个统计图补充完整;
(3)请你估计该校八年级约有多少名学生比较了解“低碳”知识.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状、大小完全相同,小明从布袋里随机取出一个小球,记下数字为x,小红在剩下的3个小球中随机取出一个小球,记下数字为y
(1)计算由x、y确定的点(x,y)在函数y=﹣x+5的图象上的概率.
(2)小明和小红约定做一个游戏,其规则为:若x、y满足xy>6,则小明胜;若x、y满足xy<6,则小红胜,这个游戏公平吗?请说明理由;若不公平,请写出公平的游戏规则.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在一个单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,是斜边在x轴上、斜边长分别为2,4,6,…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2017的横坐标为( )
A. 1010 B. 2 C. 1 D. ﹣1006
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD中,AD=2AB,E是BC的中点,连结AE并延长交DC的延长线于点F.
(1)求证:DE⊥AF;
(2)若∠B=60°,DE=4,求AB的长,
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com