精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).

(1)把△ABC向上平移3个单位后得到△A1B1C1 , 请画出△A1B1C1并写出点B1的坐标;
(2)已知点A与点A2(2,1)关于直线l成轴对称,请画出直线l及△ABC关于直线l对称的△A2B2C2 , 并直接写出直线l的函数解析式.

【答案】
(1)

解:如图,△A1B1C1即为所求,B1(﹣2,﹣1)


(2)

如图,△A2B2C2即为所求,直线l的函数解析式为y=﹣x.


【解析】(1)根据图形平移的性质画出△A1B1C1并写出点B1的坐标即可;(2)连接AA2 , 作线段AA2的垂线l,再作△ABC关于直线l对称的△A2B2C2即可.
【考点精析】关于本题考查的确定一次函数的表达式和作轴对称图形,需要了解确定一个一次函数,需要确定一次函数定义式y=kx+b(k不等于0)中的常数k和b.解这类问题的一般方法是待定系数法;画对称轴图形的方法:①标出关键点②数方格,标出对称点③依次连线才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,有正方形ABCD,把△ADE顺时针旋转到△ABF的位置.其中AD=4,AE=5,则BF=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图, 中, 上一点, 的长是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,P是对角线AC上任一点(不与A,C重合),连接BP,DP,过P作PE∥CD交AD于E,过P作PF∥AD交CD于F,连接EF.
(1)求证:△ABP≌△ADP;
(2)若BP=EF,求证:四边形EPFD是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AB>AC,∠CAD为△ABC的外角,观察图中尺规作图的痕迹,则下列结论错误的是(
A.∠DAE=∠B
B.∠EAC=∠C
C.AE∥BC
D.∠DAE=∠EAC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,任意四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,对于四边形EFGH的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是(
A.当E,F,G,H是各边中点,且AC=BD时,四边形EFGH为菱形
B.当E,F,G,H是各边中点,且AC⊥BD时,四边形EFGH为矩形
C.当E,F,G,H不是各边中点时,四边形EFGH可以为平行四边形
D.当E,F,G,H不是各边中点时,四边形EFGH不可能为菱形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是一种斜挎包,其挎带由双层部分、单层部分和调节扣构成.小敏用后发现,通过调节扣加长或缩短单层部分的长度,可以使挎带的长度(单层部分与双层部分长度的和,其中调节扣所占的长度忽略不计)加长或缩短.设单层部分的长度为xcm,双层部分的长度为ycm,经测量,得到如下数据:

单层部分的长度x(cm)

4

6

8

10

150

双层部分的长度y(cm)

73

72

71


(1)根据表中数据的规律,完成以下表格,并直接写出y关于x的函数解析式;
(2)根据小敏的身高和习惯,挎带的长度为120cm时,背起来正合适,请求出此时单层部分的长度;
(3)设挎带的长度为lcm,求l的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是(
A.280
B.240
C.300
D.260

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将函数y=2x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|2x+b|(b为常数)的图象.若该图象在直线y=2下方的点的横坐标x满足0<x<3,则b的取值范围为

查看答案和解析>>

同步练习册答案