精英家教网 > 初中数学 > 题目详情

【题目】(12分)菱形ABCD中,两条对角线AC,BD相交于点O,MON+BCD=180°,MON绕点O旋转,射线OM交边BC于点E,射线ON交边DC于点F,连接EF.

(1)如图1,当ABC=90°时,OEF的形状是

(2)如图2,当ABC=60°时,请判断OEF的形状,并说明理由;

(3)在(1)的条件下,将MON的顶点移到AO的中点O′处,MO′N绕点O′旋转,仍满足MO′N+BCD=180°,射线O′M交直线BC于点E,射线O′N交直线CD于点F,当BC=4,且时,直接写出线段CE的长.

【答案】(1)OEF是等腰直角三角形;(2)OEF是等边三角形;(3)

【解析】

试题分析:(1)先四边形ABCD是正方形,得出EBO=FCO=45°,OB=OC,得出BOE=COF,进一步得到BOE≌△COF,从而得到结论

(2)过O点作OGBC于G,作OHCD于H,根据菱形的性质可得CA平分BCD,ABC+BCD=180°,求得OG=OH,BCD=120°,GOH=EOF=60°,进一步得出EOG=FOH,得出EOG≌△FOH,从而得到结论

(3)过O点作OGBC于G,作OHCD于H,先求得四边形O′GCH是正方形,从而求得GC=O′G=3,GO′H=90°,得到EO′G ≌△FO′H全等,得到O′EF是等腰直角三角形,根据已知求得等腰直角三角形的直角边O′E的长,然后根据勾股定理求得EG,即可求得CE的长.

试题解析:(1)OEF是等腰直角三角形;如图1,菱形ABCD中,ABC=90°,四边形ABCD是正方形,OB=OC,BOC=90°,BCD=90°,EBO=FCO=45°,∴∠BOE+COE=90°,∵∠MON+BCD=180°,∴∠MON=90°,∴∠COF+COE=90°,∴∠BOE=COF,在BOE与COF中,∵∠BOE=COF,OB=OC,EBO=FCO∴△BOE≌△COF(ASA),OE=OF,∴△OEF是等腰直角三角形;

(2)OEF是等边三角形;如图2,过O点作OGBC于G,作OHCD于H,∴∠OGE=OGC=OHC=90°,四边形ABCD是菱形,CA平分BCD,ABC+BCD=180°,OG=OH,BCD=180°﹣60°=120°,∵∠GOH+OGC+BCD+OHC=360°,∴∠GOH+BCD=180°,∴∠MON+BCD=180°,∴∠GOH=EOF=60°,∵∠GOH=GOF+FOH,EOF=GOF+EOG,∴∠EOG=FOH,在EOG与FOH中,∵∠EOG=FOH,OG=OH,EGO=FHO∴△EOG≌△FOH(ASA),OE=OF,∴△OEF是等边三角形;

(3)如图3,菱形ABCD中,ABC=90°,四边形ABCD是正方形,,过O点作O′GBC于G,作O′HCD于H,∴∠O′GC=O′HC=BCD=90°,四边形O′GCH是矩形,O′GAB,O′HAD,AB=BC=CD=AD=4,O′G=O′H=3,四边形O′GCH是正方形,GC=O′G=3,GO′H=90°∵∠MO′N+BCD=180°,∴∠EO′F=90°,∴∠EO′F=GO′H=90°,∵∠GO′H=GO′F+FO′H,EO′F=GO′F+EO′G,∴∠EO′G=FO′H,在EO′G与FO′H中,∵∠EOG=FOH,OG= OH,EG O=FH O∴△EO′G≌△FO′H(ASA),O′E=O′F,∴△O′EF是等腰直角三角形;S正方形ABCD=4×4=16,SO′EF=18,SO′EF=O′E=6,在RTO′EG中,EG===CE=CG+EG=.根据对称性可知,当M′ON′旋转到如图所示位置时,CE′=E′G﹣CG=

综上可得,线段CE的长为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知如图,直线ABx轴于点A,交y轴于点BABtanBAO3

1)求直线AB的解析式;

2)直线ykx+b经过点Bx轴交于点C,且∠ABC45°,ADBC于点D.动点P从点C出发,沿CB方向以每秒个单位长度的速度向终点B运动,运动时间为t,设△ADP的面积为S,求St的函数关系式,并直接写出自变量t的取值范围.

3)在(2)的条件下,点P在线段BD上,点F在线段AB上,∠APC=∠FPB,连接AP,过点FFGAP于点G,交AD于点H,若DPDH,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,经过点A的双曲线y=(x0)同时经过点B,且点A在点B的左侧,点A的横坐标为AOB=OBA=45°,则k的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C90°BC4BA5,点D是边AC上的一动点,过点DDEAB交边BC于点E,过点BBFBCDE的延长线于点F,分别以DEEF为对角线画矩形CDGE和矩形HEBF,则在DAC的运动过程中,当矩形CDGE和矩形HEBF的面积和最小时,AD的长度为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,若将左图正方形剪成四块,恰能拼成右图的矩形,设a=1,则b=(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】商场某种新商品每件进价是120在试销期间发现当每件商品售价为130元时每天可销售70当每件商品售价高于130元时每涨价1日销售量就减少1.据此规律请回答:

(1)当每件商品售价定为170元时每天可销售多少件商品?商场获得的日盈利是多少?

(2)在上述条件不变商品销售正常的情况下每件商品的销售价定为多少元时商场日盈利可达到1600?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P是正方形ABCD内一点,∠APB=135 , BP=1,AP=,求PC的值(  )

A. B. 3 C. D. 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】服装柜在销售中发现某品牌童装平均每天可售出20件,每件盈利40元.为了迎接六一儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现,如果每件童装每降价4元,那么平均每天就可多售出8件,要想平均每天在销售这种童装上盈利1200元,那么每件童装应降价多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角梯形 AOBC 中,ACOB,且 OB6AC5OA4

1)求 BC 两点的坐标;

2)以 OABC 中的三点为顶点可组成哪几个不同的三角形?

3)是否在边 AC BC(含端点)上分别存在点 M 和点 N,使得△MON 的面积最大时,它的周长还最短?若存在,说明理由,并求出这时点 MN 的坐标;若不存在,为什么?

查看答案和解析>>

同步练习册答案