【题目】在平面直角坐标系xOy中,点A(0,2),抛物线y=mx2+4mx+5m的对称轴与x轴交于点B.
(1)求点B的坐标;
(2)当m>0时,过A点作直线l平行于x轴,与抛物线交于C、D两点(C在D左侧),C、D横坐标分别为x1、x2,且x2﹣x1=2,求抛物线的解析式;
(3)若抛物线与线段AB恰只有一个公共点,则请结合函数图象,直接写出m的取值范围.
【答案】(1)(﹣2,0);(2) y=x2+4x+5;(3) 0<m<或m=.
【解析】
(1)利用对称轴公式求得对称轴,即可求得B的坐标;
(2)先根据对称轴求出x1+x2=﹣4,结合x2﹣x1=2,即可求出x1和x2的值,从而可求出C(﹣3,2),D(﹣1,2),然后用待定系数法求解即可;
(3)当m<0时不合题意;当m>0,分两种情况讨论,结合图象即可求得.
解:(1)∵抛物线y=mx2+4mx+5m的对称轴为直线x=﹣=﹣2,
∴对称轴与x轴交点B的坐标为(﹣2,0);
(2)由题意可知,C、D两点关于抛物线的对称轴对称,且C在D的左边,
∴=﹣2,
∴x1+x2=﹣4,
∵x2﹣x1=2,
∴x1=﹣3,x2=﹣1,
∵A(0,2),且过A的直线l平行于x轴,
∴C(﹣3,2),D(﹣1,2),
将D点代入抛物线,得m﹣4m+5m=2,
解,得m=1,
∴抛物线的解析式为y=x2+4x+5;
(3)∵A(0,2),B(﹣2,0),
∴线段AB在x轴上方,直线AB=x+2,
函数y=mx2+4mx+5m中,△=(4m)2﹣4m5m=﹣4m2<0,
∴抛物线与x轴无交点,
当m<0时,抛物线开口向下,顶点在x轴下方,与线段AB为交点,
当m>0时,抛物线开口向上,顶点在x轴上方,若抛物线与AB有一个交点,有两种情况:
①如图1,抛物线与AB相切时,则mx2+4mx+5m=x+2整理得,mx2+(4m﹣1)x+5m﹣2=0,
△=(4m﹣1)2﹣4m(5m﹣2)=0,解得m=或m=﹣(舍去),
②抛物线与y轴的交点在O、A之间,即0<5m<2,解得0<m<,
综上所述,m的取值范围是 0<m<或m=.
科目:初中数学 来源: 题型:
【题目】已知:如图,在矩形ABCD中,E是BC边一点,DE平分∠ADC,EF∥DC角AD边于点F,连结BD.
(1)求证:四边形EFCD是正方形;
(2)若BE=1,ED=2,求BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC 在平面直角坐标系中的位置如图所示,其中每 个小正方形的边长为 1 个单位长度.
(1)画出△ABC 关于原点 O 的中心对称图形△A1B1C1,并写出点 A1 的坐标;
(2)将△ABC 绕点 C 顺时针旋转 90°得到△A2B2C,画出△A2B2C,求在旋转过程中,点 A 所经过的路径长
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形DEFG是△ABC的内接正方形,D、G分别在AB、AC上,E、F在BC上,AH是△ABC的高,已知BC=20,AH=16,求正方形DEFG的边长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=x2﹣4x+3.
(1)用配方法将y=x2﹣4x+3化成y=a(x﹣h)2+k的形式;
(2)在平面直角坐标系中,画出这个二次函数的图象;
(3)写出当x为何值时,y>0.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图抛物线y=ax2+3ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB,
(1)求抛物线的解析式;
(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;
(3)若点E在x轴上,点P在抛物线上.是否存在以A,C,E,P为顶点且以AC为一边的平行四边形?若存在,写出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,DE⊥BC,垂足为点E,连接CD.
(1)如图1,DE与BC的数量关系是 ;
(2)如图2,若P是线段CB上一动点(点P不与点B、C重合),连接DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连接BF,请猜想DE、BF、BP三者之间的数量关系,并证明你的结论;
(3)若点P是线段CB延长线上一动点,按照(2)中的作法,请在图3中补全图形,并直接写出DE、BF、BP三者之间的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现有甲、乙、丙三人组成的篮球训练小组,他们三人之间进行互相传球练习,篮球从一个人手中随机传到另外一个人手中计作传球一次,共连续传球三次.
(1)若开始时篮球在甲手中,则经过第一次传球后,篮球落在丙的手中的概率是 ;
(2)若开始时篮球在甲手中,求经过连续三次传球后,篮球传到乙的手中的概率.(请用画树状图或列表等方法求解)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C(0,3).
(1)求此抛物线所对应函数的表达式;
(2)若M 是抛物线对称轴上一个动点,求当 MA+MC 的值最小时 M 点坐标;
(3)若抛物线的顶点为D,在其对称轴右侧的抛物线上是否存在点P,使得△PCD为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com