【题目】综合题
(1)操作发现:
如图①,在正方形ABCD中,过A点有直线AP,点B关于AP的对称点为E,连接DE交AP于点F,当∠BAP=20°时,则∠AFD=°;当∠BAP=α°(0<α<45°)时,则∠AFD=;猜想线段DF,EF,AF之间的数量关系:DF﹣EF=AF(填系数);
(2)数学思考:
如图②,若将“正方形ABCD中”改成“菱形ABCD中,∠BAD=120°”,其他条件不变,则∠AFD=;线段DF,EF,AF之间的数量关系是否发生改变,若发生改变,请写出数量关系并说明理由;
(3)类比探究:
如图③,若将“正方形ABCD中”改成“菱形ABCD中,∠BAD=α°”,其他条件不变,则∠AFD=°;请直接写出线段DF,EF,AF之间的数量关系: .
【答案】
(1)45,,45
(2)30
(3)解:(90﹣ ),DF﹣EF=2sin αAF
【解析】【解析】解:(1)如图①中,连接BF、作AH⊥AF交DE于H.
当∠PAB=20°时,
∵∠PAB=∠PAE=20°,∠BAD=90°,
∴∠EAD=130°,
∵AB=AE=AD,
∴∠E= (180°﹣130°)=25°,
∴∠AFD=∠E+∠PAE=45°,
当∠PAB=α时,∠E= [180°﹣(90°+2α)]=45°﹣α,
∴∠AFD=∠E+∠PAE=45°﹣α+α=45°,
∵∠AFH=45°,∠FAH=90°,
∴AF=AH,
∵∠FAH=∠BAD=90°,
∴∠FAB=∠HAD,∵AB=AD,
∴△FAB≌△HAD,
∴BF=DH,
∵EF=BF,
∴DH=EF,
∴DF﹣EF=FH= AF,
所以答案是45,45, .
⑵如图②中,连接BF、作∠FAH=120°交DE于H,AM⊥DE于M.
设∠PAB=α,
则∠E= [180°﹣(120°+2α)=30°﹣α,
∴∠AFD=∠E+∠PAE=30°,
∵∠EAH=∠BAD=120°,
∴∠FAB=∠HAD,
∵∠AFH=∠AHF=30°,
∴AF=AH,∵AB=AD,
∴△FAB≌△HAD,
∴BF=DH=EF,
∴DF﹣AF=DF﹣DH=FH,
∴AM⊥FH,AF=AH,
∴FM=MH=AFcos30°,
∴FH= AF,
∴DF﹣EF= AF,
所以答案是30,改变,DF﹣EF= AF
⑶如图③中,当∠BAD=α时,设∠PAB=∠PAE=x,连接BF、作∠FAH=α交DE于H,AM⊥DE于M.
则∠E= [180°﹣(α+2x)=90°﹣ α﹣x,
∴∠AFD=∠E+∠PAE=90°﹣ α,
∵∠EAH=∠BAD=α,
∴∠FAB=∠HAD,
∵∠AFH=∠AHF=90°﹣ α,
∴AF=AH,∵AB=AD,
∴△FAB≌△HAD,
∴BF=DH=EF,
∴DF﹣AF=DF﹣DH=FH,
∴AM⊥FH,AF=AH,
∴FM=MH=AFsin α,
∴FH=2sin αAF,
∴DF﹣EF=2sin αAF.
所以答案是(90﹣ img src="http://thumb.zyjl.cn/questionBank/Upload/2018/02/24/01/d9b95732/SYS201802240151098887506597_DA/SYS201802240151098887506597_DA.002.png" width="9" height="32" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" /> ),DF﹣EF=2sin αAF.
(1)如图①中,连接BF、作AH⊥AF交DE于H.根据∠AFD=∠E+∠PAE=45°求出∠E即可解决问题;只需要证明△FAB≌△HAD,就可得出结论DF﹣EF=FH= AF解决问题;(2)如图②中,结论:30°,改变,DF﹣EF= AF,连接BF、作∠FAH=120°交DE于H,AM⊥DE于M.只需要证明△FAB≌△HAD,FH= AF即可;(3)结论(90﹣ ),DF﹣EF=2sin αAF.如图③中,当∠BAD=α时,设∠PAB=∠PAE=x,连接BF、作∠FAH=α交DE于H,AM⊥DE于M.证明方法类似。
【考点精析】认真审题,首先需要了解菱形的性质(菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半),还要掌握正方形的性质(正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形)的相关知识才是答题的关键.
科目:初中数学 来源: 题型:
【题目】为了解学生的艺术特长发展情况,某校音乐决定围绕在“舞蹈、乐器、声乐、戏曲、其他活动”项目中,你最喜欢哪一项活动(每人只限一项)的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制如下两幅不完整的统计图.请你根据统计图解答下列问题:
(1)在这次调查中,一共抽查了名学生,其中喜欢“舞蹈”活动项目的人数占抽查总人数的百分比为 . 扇形统计图中喜欢“戏曲”部分扇形的圆心角为度.
(2)请你补全条形统计图.
(3)若在“舞蹈、乐器、声乐、戏曲”项目中任选两项成立课外兴趣小组,请用列表或画树状图的方法求恰好选中“舞蹈、声乐”这两项的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:点C在线段BD上,AC⊥CE,∠A=∠1,∠E=∠2.
(1)若∠1=70°,求∠B、∠D的度数;
(2)判断AB与ED的位置关系,并说明理由;
(3)作∠A、∠E的角平分线相交于点P,求∠P的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,且AB=6,C是⊙O上一点,D是 的中点,过点D作⊙O的切线,与AB,AC的延长线分别交于点E,F,连接AD.
(1)求证:AF⊥EF;
(2)填空:
①当BE=时,点C是AF的中点;
②当BE=时,四边形OBDC是菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市民居民“一户一表”生活用水阶梯式计费价格表的部分信息:
(说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费)
已知小王家2012年4月用水20吨,交水费66元,5月份用水25吨,交水费91元.
(1)求a,b的值;
(2)随着夏天的到来,用水量将增加.为了节省开支.小王计划把6月份的水费控制在不超过家庭月收入的2%,若小王家的月收入为9200元,则小王家6月份最多能用水多少吨?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC中,BE平分∠ABC,点P在射线BE上.
(1)如图1,若∠ABC=40°,CP∥AB,求∠BPC的度数;
(2)如图2,若∠BAC=100°,∠PBC=∠PCA,求∠BPC的度数;
(3)若∠ABC=40°,∠ACB=30°,直线CP与△ABC的一条边垂直,画出相应图形并求∠BPC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】中华文明,源远流长;中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:
成绩x/分 | 频数 | 频率 |
50≤x<60 | 10 | 0.05 |
60≤x<70 | 30 | 0.15 |
70≤x<80 | 40 | n |
80≤x<90 | m | 0.35 |
90≤x≤100 | 50 | 0.25 |
请根据所给信息,解答下列问题:
(1)m= ,n= ;
(2)请补全频数分布直方图;
(3)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】各顶点都在方格纸格点(横竖格子线的交错点)上的多边形称为格点多边形.如何计算它的面积?奥地利数学家皮克证明了格点多边形的面积公式:,其中表示多边形内部的格点数,表示多边形边界上的格点数,表示多边形的面积.如图①,
(1)请算出图②中格点多边形的面积是 .
(2)请在图③中画一个格点平行四边形,使它的面积为7,且每条边上除顶点外无其他格点.
(3)请在图④中画一个格点菱形(非正方形),使它内部和边界上都只含有4个格点,并算出它的面积是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,为了测量某建筑物BC的高度,小明先在地面上用测角仪自A处测得建筑物顶部的仰角是30°,然后在水平地而上向建筑物前进了50m到达D处,此时遇到一斜坡,坡度i=1: ,沿着斜坡前进20米到达E处测得建筑物顶部的仰角是45°,(坡度i=1: 是指坡面的铅直高度FE与水平宽度DE的比).请你计算出该建筑物BC的高度.(取 =1.732,结果精确到0.1m).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com