精英家教网 > 初中数学 > 题目详情

如图,在平面直角坐标系xOy中,我把由两条射线AEBF和以AB为直径的半圆所组成的图形叫作图形C(注:不含AB线段)。已知A),B),AEBF,且半圆与y轴的交点D在射线AE的反向延长线上。

(1)求两条射线AEBF所在直线的距离;

(2)当一次函数的图象与图形C恰好只有一个公共点时,写出b的取值范围;

当一次函数的图象与图形C恰好只有两个公共点时,写出b的取值范围;

(3)已知AMPQ(四个顶点AMPQ按顺时针方向排列)的各顶点都在图形C上,且不都在两条射线上,求点M的横坐标x的取值范围。

             

  (1) 证明:如图1.

     ∵ AF平分ÐBAD,∴ÐBAF=ÐDAF,

     ∵ 四边形ABCD是平行四边形,

     ∴ AD//BC,AB//CD。

     ∴ ÐDAF=ÐCEF,ÐBAF=ÐF,

     ∴ ÐCEF=ÐF,∴ CE=CF。

  (2) ÐBDG=45°.

  (3) [解] 分别连结GB、GE、GC(如图2).

         ∵ AB//DC,ÐABC=120°,

         ∴ ÐECF=ÐABC=120°,

         ∵ FG //CE且FG=CE,

         ∴ 四边形CEGF是平行四边形.

         由(1)得CE=CF, ∴·CEGF是菱形,

         ∴ EG=EC,ÐGCF=ÐGCE=ÐECF=60°.

         ∴ △ ECG是等边三角形.

         ∴ EG=CG…j,

         ÐGEC=ÐEGC=60°,

         ∴ÐGEC=ÐGCF,

         ∴ÐBEG=ÐDCG…k,

         由AD//BC及AF平分ÐBAD可得ÐBAE=ÐAEB,

         ∴AB=BE.

         在 ABCD中,AB=DC.

         ∴BE=DC…l,

         由jkl得△BEG @ △DCG.

         ∴ BG=DG,Ð1=Ð2,

         ∴ ÐBGD=Ð1+Ð3=Ð2+Ð3=ÐEGC=60°.

         ∴ ÐBDG=(180°-ÐBGD)=60°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案