精英家教网 > 初中数学 > 题目详情

【题目】已知:O是直线AB上的一点,是直角,OE平分

(1)如图1.若.求的度数;

(2)在图1中,,直接写出的度数(用含a的代数式表示);

(3)将图1中的绕顶点O顺时针旋转至图2的位置,探究的度数之间的关系.写出你的结论,并说明理由.

【答案】(1);(2);(3)理由见解析.

【解析】

(1)先根据补角的定义求出BOC的度数,再由角平分线的性质得出COE的度数,根据DOE=∠COD-∠COE即可得出结论;

(2)同(1)可得出结论;

(3)先根据角平分线的定义得出COE=∠BOE=∠BOC,再由DOE=∠COD-∠COE即可得出结论.

(1)∵是直角,

∵OE平分

(2)是直角,

∵OE平分

(3)

理由是:,OE平分

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】若关于x的分式方程 无解,则m的值为(  )
A.﹣1.5
B.1
C.﹣1.5或2
D.﹣0.5或﹣1.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把一张长是a,宽是b的长方形硬纸板的四周各剪去一个边长为c的正方形(a>b>2c).再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).

(1)若a=12,b=7,c=2,求折合成的长方体盒子的侧面积是多少?

(2)请用含a,b,c的代数式表示折成的长方体盒子的底面周长;

(3)如果把长方体硬纸板的四周剪去2个边长为c的正方形和2个同样形状、同样大小的长方形,然后折合成一个有盖的长方体盒子,那么它的底面周长是多少?(用含a,b,c的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】分类讨论是一种重要的数学方法,如在化简|a|时,可以这样分类:当a>0时,|a|=a;当a=0时,|a|=0;当a<0时,|a|=﹣a.用这种方法解决下列问题:

(1)a=5时,求的值.

(2)a=﹣2时,求的值.

(3)若有理数a不等于零,求的值.

(4)若有理数a、b均不等于零,试求+的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x(时)之间的函数图象.

根据下面图象,回答下列问题:

(1)求线段AB所表示的函数关系式;

(2)已知昨天下午3点时,小明距西安112千米,求他何时到家?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】近两年,国际市场黄金价格涨幅较大,中国交通银行推出沃德金的理财产品,即以黄金为投资产品,投资者从黄金价格的上涨中赚取利润.上周五黄金的收盘价为285/克,下表是本周星期一至星期五黄金价格的变化情况.(注:星期一至星期五开市,星期六.星期日休市)

星期

收盘价的变化(与前一天收盘价比较)

+7

+5

+8

问:(1)本周星期三黄金的收盘价是多少?

(2)本周黄金收盘时的最高价.最低价分别是多少?

(3)上周,小王以周五的收盘价285/克买入黄金1000克,已知买入与卖出时均需支付成交金额的千分之五的交易费,卖出黄金时需支付成交金额的千分之三的印花税.本周,小王以周五的收盘价全部卖出黄金1000克,他的收益情况如何?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,EDC边上一点,且DE=1,AE=EF,∠AEF=90°,则FC= ( )

A. B. C. D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,点P是线段AD上一动点,OBD的中点,PO的延长线交BC于点Q。

(1)求证:OP=OQ;

(2)若AD=8cm,AB=6cm,P从点A出发,以1cm/秒的速度向点D运动(不与点D重合),设点P运动时间为t秒,请用t表示PD的长;并求当t为何值时,四边形PBQD是菱形。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】教师节当天,出租车司机小王在东西向的街道上免费接送教师,规定向东为正,向西为负,当天出租车的行程如下(单位:千米):

将最后一名老师送到目的地时,小王距出发地多少千米?方位如何?

若汽车耗油量为/千米,则当天耗油多少升?若汽油价格为/升,则小王共花费了多少元钱?

查看答案和解析>>

同步练习册答案