精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形ABCD中,EDC边上一点,且DE=1,AE=EF,∠AEF=90°,则FC= ( )

A. B. C. D. 1

【答案】B

【解析】分析:如图,过点FFMDC,交DC的延长线于点M,根据已知条件证得△ADE△EFM,利用全等三角形的性质易得FM=CM=1,根据勾股定理即可求得FC的长.

详解:

如图,过点FFMDC,交DC的延长线于点M,

∵四边形ABCD为正方形,

∴AD=CD,∠D=90°,

∵∠AEF=90°,

∴∠DAE+∠AED=∠FEM+∠AED=90°,

∴∠DAE =∠FEM,

在△ADE和△EFM中,

∴△ADE△EFM,

∴DE=FM=1,AD=EM,

∵AD=CD,

∴CD=EM,

∴DE=CM=1.

Rt△FCM中,根据勾股定理求得FC=.

故选B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】.如图,矩形ABCD中,OAC中点,过点O的直线分别与ABCD交于点EF,连结BFAC于点M,连结DEBO.若∠COB=60°FO=FC,则下列结论:①FB垂直平分OC②△EOB≌△CMB③DE=EF④SAOESBCM=23.其中正确结论的个数是( )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,,垂足为E.求证:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:O是直线AB上的一点,是直角,OE平分

(1)如图1.若.求的度数;

(2)在图1中,,直接写出的度数(用含a的代数式表示);

(3)将图1中的绕顶点O顺时针旋转至图2的位置,探究的度数之间的关系.写出你的结论,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:O是直线AB上的一点,是直角,OE平分

(1)如图1.若.求的度数;

(2)在图1中,,直接写出的度数(用含a的代数式表示);

(3)将图1中的绕顶点O顺时针旋转至图2的位置,探究的度数之间的关系.写出你的结论,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】
(1)如图1,点E,F在BC上,BE=CF,AB=DC,∠B=∠C,求证:∠A=∠D.
(2)如图2,在边长为1个单位长度的小正方形所组成的网格中,△ABC的顶点均在格点上. ①求sinB的值;
②画出△ABC关于直线l对称的△A1B1C1(A与A1 , B与B1 , C与C1相对应),连接AA1 , BB1 , 并计算梯形AA1B1B的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQA处距O240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以72千米/时的速度行驶时,A处受噪音影响的时间为(

A. B. 16 C. D. 24

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,以AB为直径的⊙O交AC于点M,弦MN∥BC交AB于点E,且ME=1,AM=2,AE=
(1)求证:BC是⊙O的切线;
(2)求 的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】设a1 , a2 , …,a2017是从1,0,﹣1这三个数中取值的一列数,若a1+a2+…+a2017=84,(a1+1)2+(a2+1)2+…+(a2017+1)2=4001,则a1 , a2 , …,a2017中为0的个数是

查看答案和解析>>

同步练习册答案