精英家教网 > 初中数学 > 题目详情

【题目】盐城市“创建文明城市”活动如火如荼的展开.某中学为了搞好“创建文明城市”活动的宣传,校学生会就本校学生对盐城“市情市况”的了解程度进行了一次调查测试.经过对测试成绩的分析,得到如下图所示的两幅不完整的统计图(A:59分及以下;B:60﹣69分;C:70﹣79分;D:80﹣89分;E:90﹣100分).请你根据图中提供的信息解答以下问题:
(1)求该校共有多少名学生;
(2)将条形统计图补充完整;
(3)在扇形统计图中,计算出“60﹣69分”部分所对应的圆心角的度数.

【答案】
(1)解:该学校的学生人数是:300÷30%=1000(人)
(2)解:条形统计图如图所示.


(3)解:在扇形统计图中,“60﹣69分”部分所对应的圆心角的度数是:360°×( ×100%)=72°
【解析】(1)根据扇形图可得70﹣79分的学生占总体的30%,由条形图可得70﹣79分的学生有300人,利用总数=频数÷所占百分比进行计算即可;(2)首先计算出59分及以下、80﹣89分的学生人数,再将条形统计图补充完整;(3)首先计算出60﹣69分部分的学生所占百分比,再利用360°×百分比即可.
【考点精析】利用扇形统计图和条形统计图对题目进行判断即可得到答案,需要熟知能清楚地表示出各部分在总体中所占的百分比.但是不能清楚地表示出每个项目的具体数目以及事物的变化情况;能清楚地表示出每个项目的具体数目,但是不能清楚地表示出各个部分在总体中所占的百分比以及事物的变化情况.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,CE平分∠ACB,交AB于点E.

(1)求证:AC平分∠DAB;
(2)求证:△PCE是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=x﹣1与反比例函数y= 的图象交于A、B两点,与x轴交于点C,已知点A的坐标为(﹣1,m).
(1)求反比例函数的解析式;
(2)若点P(n,﹣1)是反比例函数图象上一点,过点P作PE⊥x轴于点E,延长EP交直线AB于点F,求△CEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.
(1)求证:△ADE≌△ABF;
(2)若BC=8,DE=6,求△AEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探究与应用.试完成下列问题:
(1)如图①,已知等腰Rt△ABC中,∠C=90°,点O为AB的中点,作∠POQ=90°,分别交AC、BC于点P、Q,连结PQ、CO,求证:AP2+BQ2=PQ2
(2)如图②,将等腰Rt△ABC改为任意直角三角形,点O仍为AB的中点,∠POQ=90°,试探索上述结论AP2+BQ2=PQ2是否仍成立;
(3)通过上述探究(可直接运用上述结论),试解决下面的问题:如图③,已知Rt△ABC中,∠C=90°,AC=6,BC=8,点O为AB的中点,过C、O两点的圆分别交AC、BC于P、Q,连结PQ,求△PCQ面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,以△ABC的边AB、AC为边分别向外作等腰直角△ABD和等腰直角△ACE,连接CD、BE、DE
(1)证明:△ADC≌△ABE;
(2)试判断△ABC与△ADE面积之间的关系,并说明理由;
(3)园林小路,曲径通幽,如图2所示,小路由白色的正方形大理石和黑色的三角形大理石铺成,已知中间的所有正方形的面积之和是a平方米,内圈的所有三角形的面积之和是b平方米,这条小路一共占地平方米.(不用写过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC=10,点D是边BC上一动点(不与B,C重合),∠ADE=∠B=α,DE交AC于点E,且cosα= .下列结论:①△ADE∽△ACD;②当BD=6时,△ABD与△DCE全等;③△DCE为直角三角形时,BD为8;④0<CE≤6.4.其中正确的结论是 . (把你认为正确结论的序号都填上)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】爱好思考的小茜在探究两条直线的位置关系查阅资料时,发现了“中垂三角形”,即两条中线互相垂直的三角形称为“中垂三角形”.如图(1)、图(2)、图(3)中,AM、BN是△ABC的中线,AM⊥BN于点P,像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.
(1)【特例探究】
如图1,当tan∠PAB=1,c=4 时,a= , b=
如图2,当∠PAB=30°,c=2时,a= , b=

(2)【归纳证明】
请你观察(1)中的计算结果,猜想a2、b2、c2三者之间的关系,用等式表示出来,并利用图3证明你的结论.

(3)【拓展证明】
如图4,ABCD中,E、F分别是AD、BC的三等分点,且AD=3AE,BC=3BF,连接AF、BE、CE,且BE⊥CE于E,AF与BE相交点G,AD=3 ,AB=3,求AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于反比例函数y=﹣ ,下列说法不正确的是(
A.图象经过点(1,﹣3)
B.图象分布在第二、四象限
C.当x>0时,y随x的增大而增大
D.点A(x1 , y1)、B(x2、y2)都在反比例函数y=﹣ 的图象上,若x1<x2 , 则y1<y2

查看答案和解析>>

同步练习册答案