精英家教网 > 初中数学 > 题目详情

【题目】如图,某数学兴趣小组的同学利用标杆测量旗杆(AB)的高度:将一根5米高的标杆(EF)竖在某一位置,有一名同学站在一处与标杆、旗杆成一条直线,此时他看到标杆顶端与旗杆顶端重合,另外一名同学测得站立的同学离标杆3米,离旗杆30米.如果站立的同学的眼睛距地面(CD)1.6米,求旗杆的高度.

【答案】解:过点E作EH⊥AB于点H,交CD于点G. 由题意可得 四边形EFDG、GDHB都是矩形,AB∥CD∥EF.
∴△AECG∽△EAH.

由题意可得
EG=FD=3,GH=BD=30,CG=CD﹣GD=CD﹣EF=5﹣1.6=3.4.

∴AH=34米.
∴AH=AH+HB=34+1.6=35.6米.
答:旗杆高ED为35.6米.
【解析】过点E作CG⊥AH于点H,交CD于点G得出△EGC∽△EHA,进而求出AH的长,进而求出AB的长.
【考点精析】解答此题的关键在于理解相似三角形的应用的相关知识,掌握测高:测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长成比例”的原理解决;测距:测量不能到达两点间的举例,常构造相似三角形求解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,反映了小明从家里到超市的时间与距离之间关系的一幅图。

1)图中自变量和因变量各是什么?

2)小明到达超市用了多少时间?超市离家多远?

3)分别求小明从家里到超市时的平均速度是多少?返回时的平均速度是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,点D为BC边的任意一点,以点D为顶点的∠EDF的两边分别与边AB,AC交于点E、F,且∠EDF与∠A互补.
(1)如图1,若AB=AC,D为BC的中点时,则线段DE与DF有何数量关系?请直接写出结论;

(2)如图2,若AB=kAC,D为BC的中点时,那么(1)中的结论是否还成立?若成立,请给出证明;若不成立,请写出DE与DF的关系并说明理由;

(3)如图3,若 =a,且 =b,直接写出 =

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,若BF=12,AB=10,则AE的长为( )

A.13
B.14
C.15
D.16

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,E、F分别是CD、BC上的点.若∠AEF=90°,则一定有( )

A.△ADE∽△ECF
B.△BCF∽△AEF
C.△ADE∽△AEF
D.△AEF∽△ABF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边三角形纸片ABC中,点D在边AB(不包含端点AB)上运动,连接CD,将ADC对折,点A落在直线CD上的点A′处,得到折痕DE;将BDC对折,点B落在直线CD上的点B′处,得到折痕DF

1)若ADC=80°,求BDF的度数;

2)试问EDF的大小是否会随着点D的运动而变化?若不变,求出EDF的大小;若变化,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在四边形ABCD中,对角线ACBD交于点O,下列各组条件,其中不能判定四边形ABCD是平行四边形的是(  )

A. OAOCOBODB. OAOCABCD

C. ABCDOAOCD. ADB=∠CBD,∠BAD=∠BCD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“2018年西安女子半程马拉松的赛事有两项:A女子半程马拉松B“5公里女子健康跑.小明对部分参赛选手作了如下调查:

调查总人数

50

100

200

300

400

500

参加“5公里女子健康跑人数

18

45

79

120

160

b

参加“5公里女子健康跑频率

0.360

a

0.395

0.400

0.400

0.400

1)计算表中ab的值;

2)在图中,画出参赛选手参加“5公里女子健康跑的频率的折线统计图;

3)从参赛选手中任选一人,估计该参赛选手参加“5公里女子健康跑的概率(精确到0.1).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图甲,在等边三角形ABC内有一点P,且PA2PBPC1,求∠BPC度数的大小和等边三角形ABC的边长.

李明同学做了如图乙的辅助线,将△BPC绕点B逆时针旋转60°,如图乙所示,连接PP′,从而问题得到解决.你能说明其中理由并完成问题解答吗?

如图丙,在正方形ABCD内有一点P,且PABPPC1;求∠BPC度数的大小和正方形ABCD的边长.

查看答案和解析>>

同步练习册答案