【题目】如图甲,在等边三角形ABC内有一点P,且PA=2,PB=,PC=1,求∠BPC度数的大小和等边三角形ABC的边长.
①李明同学做了如图乙的辅助线,将△BPC绕点B逆时针旋转60°,如图乙所示,连接PP′,从而问题得到解决.你能说明其中理由并完成问题解答吗?
②如图丙,在正方形ABCD内有一点P,且PA=,BP=,PC=1;求∠BPC度数的大小和正方形ABCD的边长.
【答案】①见解析;②∠BPC的度数是135°,正方形ABCD的边长是.
【解析】
①根据旋转得出AP′=CP=1,BP′=BP=,∠AP′B=∠BPC,求出∠ABP′+∠ABP=60°,得到等边△BPP′,推出PP′=PB=,∠BP′P=60°,求出∠AP′P=90°,即可求出∠BPC;过点B作BM⊥AP′,交AP′的延长线于点M,由∠MP′B=30°,求出BM=,P′M=,根据勾股定理即可求出答案;
②同理求出∠BEP=(180°﹣90°)=45°,根据勾股定理的逆定理求出∠AEP=90°,推出∠BPC=∠AEB=90°+45°=135°;过点B作BF⊥AE,交AE的延长线于点F,求出FE=BF=1,AF=2,根据勾股定理即可求出AB.
①∵△ABC是等边三角形,
∴∠ABC=60°,
将△BPC绕点B逆时针旋转60°,如图乙所示,连接PP′,
∴AP′=CP=1,BP′=BP=,∠AP′B=∠BPC,
由旋转得:∠P'BP=∠ABC=60°,
∴△BPP′是等边三角形,
∴PP′=PB=,∠BP′P=60°,
∵AP′=1,AP=2,
∴AP′2+PP′2=AP2,
∴∠AP′P=90°,
∴∠BPC=∠AP′B=90°+60°=150°,
过点B作BM⊥AP′,交AP′的延长线于点M,
∴∠MP′B=30°,BM=P'B=,
由勾股定理得:P′M==,
∴AM=AP'+P'M=1+=,
由勾股定理得:AB===,
②将△BPC绕点B逆时针旋转90°得到△AEB,如图丙,
与(1)类似:可得:AE=PC=1,BE=BP=,∠BPC=∠AEB,
∴∠EBP=∠ABC=90°,
∴∠BEP=45°,
由勾股定理得:EP=2,
∵AE=1,AP=,EP=2,
∴AE2+PE2=AP2,
∴∠AEP=90°,
∴∠BPC=∠AEB=90°+45°=135°,
过点B作BF⊥AE,交AE的延长线于点F;
∴∠FEB=45°,
∴FE=BF=1,
∴AF=2;
∴在Rt△ABF中,由勾股定理,得AB==;
答:∠BPC的度数是135°,正方形ABCD的边长是.
科目:初中数学 来源: 题型:
【题目】如图,某数学兴趣小组的同学利用标杆测量旗杆(AB)的高度:将一根5米高的标杆(EF)竖在某一位置,有一名同学站在一处与标杆、旗杆成一条直线,此时他看到标杆顶端与旗杆顶端重合,另外一名同学测得站立的同学离标杆3米,离旗杆30米.如果站立的同学的眼睛距地面(CD)1.6米,求旗杆的高度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.
(1)求证:△ADE∽△ABC;
(2)若AD=3,AB=5,求 的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC中,AB=AC,BE平分∠ABC交边AC于E.
(1)如图(1),当∠BAC=108°时,证明:BC=AB+CE;
(2)如图(2),当∠BAC=100°时,(1)中的结论还成立吗?若不成立,是否有其他两条线段之和等于BC,若有请写出结论并完成证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抗震救灾中,某县粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食,全部转移到具有较强抗震功能的A、B两仓库.已知甲库有粮食100吨,乙库有粮食80吨,而A库的容量为70吨,B库的容量为110吨.从甲、乙两库到A、B两库的路程和运费如下表:(表中“元/吨千米”表示每吨粮食运送1千米所需人民币)
路程(千米) | 运费(元/吨千米) | |||
甲库 | 乙库 | 甲库 | 乙库 | |
A库 | 20 | 15 | 12 | 12 |
B库 | 25 | 20 | 10 | 8 |
(1)若甲库运往A库粮食x吨,请写出将粮食运往A、B两库的总运费y(元)与x(吨)的函数关系式;
(2)当甲、乙两库各运往A、B两库多少吨粮食时,总运费最省,最省的总运费是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.
(1)求每台A型电脑和B型电脑的销售利润;
(2)该商店计划一次购进两种型号的电脑共50台,其中A型电脑的进货量不少于14台,B型电的进货量不少于A型电脑的2倍,那么该商店有几种进货方案?该商场购进A型、B型电脑各多少台,才能使销售总利润最大?
(3)实际进货时,厂家对A型电脑出厂价下调m (0<m<100)元,若商店保持两种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这50台电脑销售总利润最大的进货方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在平面直角坐标系中,A,C,且满足过点C作CB⊥轴于点B.
(1)
(2)在轴上是否存在点P,使得三角形ABC和三角形ACP的面积相等?若存在,求出点P的坐标;若不存在,请说明理由;
(3)如图②,若过点B作BD∥AC交轴于点D,且AE、DE分别平分∠CAB、∠ODB,求∠AED的度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com